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Abstract

There is an increasing amount of information being made available as data streams,

e.g. stock tickers, data from sensor networks, smart homes, monitoring data, etc. In

many cases, this data is generated by distributed sources under the control of many

different organisations. Users would like to seamlessly query such data without prior

knowledge of where it is located or how it is published. This is similar to the problem

of integrating data residing in multiple heterogeneous stored data sources. However,

the techniques developed for stored data are not applicable due to the continuous and

long-lived nature of queries over data streams.

This thesis proposes an architecture for a stream integration system. A key fea-

ture of the architecture is a republisher component that collects together distributed

streams and makes the merged stream available for querying. A formal model for the

system has been developed and is used to generate plans for executing continuous

queries which exploit the redundancy introduced by the republishers. Additionally,

due to the long-lived nature of continuous queries, mechanisms for maintaining the

plans whenever there is a change in the set of data sources have been developed. A

prototype of the system has been implemented and performance measures made.

The work of this thesis has been motivated by the problem of retrieving monitoring

information about Grid resources. However, the techniques developed are general and

can be applied wherever there is a need to publish and query distributed data involving

data streams.
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Chapter 1

Introduction

1.1 Background

Streams of data are increasingly becoming available from multiple, autonomous, dis-

tributed sources. Typical examples of such data streams are stock tickers [1, 2], sen-

sors and sensor networks [3, 4], and various monitoring data including environmental

[5, 6], traffic [7], network [8, 9], and computing resources [10, 11]. Such streams origi-

nate from a variety of sources including “dumb” sensors, which simply make readings

about their environment available, to sophisticated computers publishing their status

information and which have the ability to perform operations on their data along with

data collected from other sources.

The applications of streaming data are many and varied, from monitoring the

situation in a disaster, e.g. a fire in the Underground, to scheduling and tracking jobs

on a computational Grid [12]. The users of the data are typically distributed and

have different requirements on the information they retrieve. For example, consider

the situation of a computational Grid where computational, network, and storage

resources are offered by various research groups which are located around the world.

To allow jobs to be scheduled, a resource broker needs the latest information about

the status of the resources on the Grid along with their capabilities. A user who

has issued a job will want to continuously track the progress of their job using a

visualisation tool. A resource manager will be interested in how much their resource

is being utilised which requires that histories of the monitoring streams are kept and

are available for querying.

1



Chapter 1. Introduction

A variety of approaches have been developed for querying streams based on the

requirements of the users of such data. The simplest set of systems which focus on

delivering data based on its content are publish/subscribe systems [13, 14]. These

allow for the publication of data as discrete events. Users declare an interest in

events with certain characteristics. When an event is published it may match multiple

subscriptions and would be forwarded on to each.

Demand for more sophisticated techniques for filtering, manipulating and relating

stream data has resulted in intense research in data streams over the last 10 years

[15, 16, 17]. A variety of stream processing systems have been developed that are able

to manipulate, store, and query multiple streams of data. However, the majority of

these systems are based on a centralised approach using a single server. They require

all the data to flow to some central point where it is processed before the answers

to queries are streamed to the users. Some distributed stream processing engines are

now starting to emerge [18, 19, 20], although these are akin to a distributed database

management system [21] in that all of the data and processing resources are under

the control of one organisation.

Increasingly, users are wanting to relate data in streams being published by multi-

ple, autonomous, distributed sources without needing to locate, retrieve, and process

the streams themselves. One example would be a Grid scheduler [22] which must use

streams of monitoring data about resources on a Grid that are provided by multiple

organisations. The requirement to be able to combine and manipulate data from mul-

tiple distributed autonomous streaming data sources without needing to know specific

details of any of the data sources is similar to the idea behind data integration.

Data integration allows heterogeneous stored data sources, e.g. databases, web

pages, etc., to be accessed through a common schema as if they were a virtual database

[23, 24, 25, 26]. The data resides at the sources, each of which has its own schema to

describe its data. The sources can be queried using the common schema which allows

the data residing in the multiple sources to be retrieved and combined without the

user needing to know what data sources exist or how to relate and convert the source

data. However, the techniques are not directly applicable to distributed data streams

due to the difference in nature of a query involving a data stream as opposed to a

query over a database.

2



Chapter 1. Introduction

Querying streams of data is based on a different paradigm to that of querying a

database. A database management system is designed to query a specific instance of a

stored data set whereas a stream query is generally interested in the changing values

on the stream. Specifically, when a query is executed by a database management

system the data is “frozen” for the duration of the query. In other words, the query

is executed against a static instance of the data that currently resides in the database

and returns those tuples in the database instance that satisfy the condition of the

query. On the other hand, the most common type of stream query, known as a

continuous query [27], is executed against data in a stream as it arrives on the stream

and returns those tuples in the stream that satisfy the query condition. A continuous

query is long-lived and returns those newly published tuples that answer the query

whereas a database query is executed once and returns only those tuples that exist in

the database at that moment in time.

So far, there has been no work considering how the ideas and techniques of data

integration could be applied and extended to meet the demands of distributed stream

processing. This thesis will consider how to integrate distributed data, both stored

and streaming, published by autonomous, distributed sources to give the user the

appearance of a virtual global data space. The work will be motivated by the require-

ments of a Grid information and monitoring system which must be able to query

streams of data, along with stored data, about the resources on a computational Grid

that are provided by multiple organisations. Although the work will be motivated

by the requirements of a Grid information and monitoring system, the techniques

developed are general and could be applied wherever there is a need to publish and

query distributed data sources publishing both stored and streaming data.

1.2 Summary of the Thesis

The aim of this thesis is to develop mechanisms by which autonomous distributed data

sources, both streaming and stored, can be queried in a unified and efficient manner

without the user needing to know the existence or location of individual data sources.

This will be achieved through the following objectives.

Analysis of existing approaches: An analysis of data integration techniques along
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with data stream processing methods will be conducted. The results of this

analysis will be used to inform the design and prototype implementation of a

stream integration system.

Design of a stream integration system: A system that is capable of publishing

and querying distributed autonomous data sources, both streaming and stored,

will be designed. The system should present to the user a query interface that

presents a virtual dataspace that consists of all the streams and stored data

made available by the distributed data sources. The system needs to provide a

mechanism to efficiently answer multiple, simultaneous queries by materialising

partial answers.

Framework for integrating streams: A formal model for a data stream will be

developed that allows desirable properties of streams to be defined. The model

should capture the publication and querying of distributed streams. Techniques

for generating plans to answer a continuous query will be developed and shown

to return the correct answer and that the answer will guarantee desirable prop-

erties, e.g. being duplicate free.

Mechanisms to adapt to changes: Queries over data streams are long-lived. Dur-

ing the execution of a query, the set of available streams will change. The system

must be able to adapt to the change so that the answers returned to a query

continue to be correct.

Implementation of a prototype: A prototype of part of the designed system will

be implemented. Suitable existing platforms will be considered and built upon.

Performance tests will be conducted to compare some of the design choices and

to investigate the efficiency of the resulting planning mechanism.

1.3 Key Contributions

This thesis makes the following contributions.

• An architecture for integrating autonomous distributed data sources, both stream-

ing and stored, through a virtual dataspace. The architecture allows both
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streaming and stored data sources, each with their own schema, to have their

data accessed by queries over a single global schema.

The architecture is based on a logical model for data streams which allows key

properties of a stream to be defined, e.g. when a stream is duplicate free. The

architecture uses the data stream model to formalise the publication of a data

stream and provides semantics for queries over the global schema and over the

schemas of the data sources. As part of these semantics, key properties that an

answer stream to a continuous query over the integrated global schema should

possess are identified and defined.

A key feature of this architecture is the republisher component which poses

a query over the global schema and makes the resulting answer available for

other queries. The republisher allows queries to be answered more efficiently by

collecting and merging the data from several sources together and making the

resulting data available from a single point.

• Techniques that allow a continuous query over the global schema to be translated

into suitable queries over the data sources. This is not straightforward since

the semantics of continuous queries have to be taken into account to ensure

that the answer streams returned have desirable and well defined properties

e.g. containing only tuples that answer the query and containing all such tuples.

In particular, the techniques developed generate query plans for answering con-

tinuous global queries in the presence of republishers. The republishers compli-

cate query answering as they introduce redundancy into the data which means a

choice has to be made as to where to retrieve each stream. The approach devel-

oped ensures that the answer stream to a query possesses desirable properties

whilst minimising the number of publishers, i.e. stream sources and republishers,

that are contacted to retrieve the data.

• A mechanism to maintain the query plans when the set of available publishers

changes. A continuous query is long-lived and as such, during the execution

of the query the set of publishers can change with publishers being added or

removed. These changes can affect the answer stream generated by a query plan

for a continuous query. For example, if a republisher is being used to answer a
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query and that republisher is removed from the system, then the answer stream

will stop even though the data, which is published by a data source, is still

flowing in the system. The mechanism developed identifies the queries that are

potentially affected by a change in the set of publishers, and when a plan is

affected the mechanism will update the plan to reflect the new set of publishers.

• A prototype implementation of the query planning and maintenance mechanisms

required for a stream integration system. The prototype implements republish-

ers so that they can form a hierarchy of publishers, i.e. a republisher may use

the answer stream computed by another republisher to answer its query. The

prototype is used to investigate the efficiency of query answering, and the effects

on query response times introduced by using a hierarchy of publishers.

1.4 Structure of Thesis

The thesis has been organised into 9 chapters as follows.

Chapter 2 presents a discussion of the key issues in the fields of research relevant

to this thesis. It begins by giving an overview of data integration with the general

concepts and details of the techniques developed for presenting a virtual database to

the user, i.e. how to relate the schema of the data sources to some common schema.

Some key integration systems are highlighted.

The chapter then goes on to discuss techniques for handling streams of data. The

concepts of publish/subscribe systems are briefly introduced along with details of

some key systems. Then more expressive stream processing techniques are presented.

An overview of a data model for streams is presented along with a discussion about

the semantics of stream queries. Finally, details of key centralised and distributed

data stream processing systems are presented.

Chapter 3 presents the motivation behind the work in this thesis. The motivating

problem for this thesis is that of providing information and monitoring data about

resources on a Grid. It will be shown that the idea of integrating streams of data is

well suited to the motivating problem.
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The chapter begins with a brief introduction to the concepts and ideas behind

Grid computing. This allows the requirements for a Grid information and monitoring

system to be identified. A discussion of the existing approaches to providing informa-

tion and monitoring data about resources on a Grid is presented with two theoretical

models and several existing systems analysed.

Chapter 4 presents an architecture for integrating distributed data sources, including

both streaming and stored data sources. The components of the architecture along

with their roles and interaction within the architecture are presented.

One of the key features of the architecture is its use of republisher components

which collect and merge data from several data sources making the resulting data

available from a single location. This allows the architecture to scale to large numbers

of data sources and queries, as partially computed results at the republishers can be

used to answer more general queries.

The chapter concludes with a discussion of the r-gma system which partially

implements the architecture presented. r-gma has been developed as a Grid infor-

mation and monitoring system and its functionality will be compared with that of

other existing systems.

The next two chapters give details of the theoretical framework and the mechanisms

developed within that framework for answering continuous queries efficiently.

Chapter 5 presents the formal framework for integrating streams of data. It begins by

presenting a formal model for a data stream along with defining desirable properties

of a stream.

The model is then used to present a formalism for publishing and querying au-

tonomous distributed data streams according to some common schema. The repub-

lisher components of the framework, while providing a scalable and efficient way to

answer queries, complicate the process of generating a plan to answer the query. This

is because they introduce a choice in where to retrieve each part of the answer stream

to a query. To ensure that a query answer is correct, properties that a query plan

should guarantee are identified and defined. Finally, an approach to generating correct

query plans based on identifying and ranking relevant publishers is presented.
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Chapter 6 introduces the problem of maintaining query plans when there is a change

in the set of publishers. Since queries are long-lived, any such change could have an

effect on the answer streams generated for existing plans. The mechanisms developed

identify those query plans that are affected and how to update the plan without

needing to re-plan the whole query.

The chapter then goes on to consider how the query planning and maintenance

mechanisms developed can be applied to republishers. Since republishers can con-

sume streams from other republishers, a hierarchy of publishers results. The query

planning and maintenance mechanisms should ensure that the resulting hierarchies

have desirable properties, e.g. do not contain a cycle where a republisher R1 consumes

from another republisher R2 and R2 consumes from R1.

Chapter 7 details the implementation of a prototype to show that the algorithms and

mechanisms developed in the previous two chapters work in practice. It is shown that

the existing r-gma system provides a good framework within which to implement

the query planning and maintenance algorithms developed. As such, details of the

existing r-gma implementation along with its query planning and plan maintenance

techniques are presented.

Chapter 8 presents the experiments and results conducted to collect performance mea-

sures from the prototype. The first of the experiments investigates the performance of

the query planning mechanism and is used to guide the development of the prototype.

The second experiment investigates the effects on the latency of an answer tuple of

using a hierarchy of publishers.

Finally, Chapter 9 presents the conclusions of this thesis, and suggests further work

to extend the results. The extensions suggested would allow the stream integration

system to be applicable in a larger range of applications.

1.5 Publications

The work of this thesis has been reported in the following papers.

• A. Cooke, A.J.G. Gray, L. Ma, W. Nutt, J. Magowan, M. Oevers, P. Taylor,

R. Byrom, L. Field, S. Hicks, J. Leake, M. Soni, A. Wilson, R. Cordenonsi,
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L. Cornwall, A. Djaoui, S. Fisher, N. Podhorszki, B. Coghlan, S. Kenny, and

D. O’Callaghan. r-gma: An information integration system for grid moni-

toring. In Proceedings of On the Move to Meaningful Internet Systems 2003:

CoopIS, DOA, and ODBASE—OTM Confederated International Conferences,

volume 2888 of Lecture Notes in Computer Science, pages 462–481, Catania

(Italy), November 2003. Springer-Verlag.

• A.W. Cooke, A.J.G. Gray, W. Nutt, J. Magowan, M. Oevers, P. Taylor, R. Cor-

denonsi, R. Byrom, L. Cornwall, A. Djaoui, L. Field, S.M. Fisher, S. Hicks,

J. Leake, R. Middleton, A. Wilson, X. Zhu, N. Podhorszki, B. Coghlan, S. Kenny,

D. O’Callaghan, and J. Ryan. The relational grid monitoring architecture: Me-

diating information about the grid. Journal of Grid Computing, 2(4):323–339,

December 2004.

• A. Cooke, A.J.G. Gray, and W. Nutt. Stream integration techniques for grid

monitoring. Journal on Data Semantics, 2:136–175, 2005.

• A.J.G. Gray and W. Nutt. Republishers in a publish/subscribe architecture for

data streams. In Proceedings of 22nd British National Conference on Databases

(BNCOD22), volume 3567 of Lecture Notes in Computer Science, pages 179–

184, Sunderland (UK), July 2005. Springer-Verlag.

• A.J.G. Gray and W. Nutt. A data stream publish/subscribe architecture with

self-adapting queries. In Proceedings of On the Move to Meaningful Internet

Systems 2005: CoopIS, DOA, and ODBASE—OTM Confederated International

Conferences, volume 3760 of Lecture Notes in Computer Science, pages 420–438,

Agia Napa (Cyprus), October 2005. Springer-Verlag.

In addition to the work in this thesis, the topic of incompleteness in data streams

has been investigated. The key results of the work on incompleteness are briefly

described in Section 9.2 and have been reported in the following papers.

• A.J.G. Gray, W. Nutt, and M. Howard Williams. Sources of incompleteness

in grid publishing. In Proceedings of 23rd British National Conference on

Databases (BNCOD23), volume 4042 of Lecture Notes in Computer Science,

pages 94–101, Belfast (UK), July 2006. Springer-Verlag.
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• A.J.G. Gray, M.H. Williams, and W. Nutt. Answering arbitrary conjunctive

queries over incomplete data stream histories. In Proceedings of 8th Interna-

tional Conference on Information Integration and Web-based applications and

Services (iiWAS2006), pages 259–268, Yogyakarta (Indonesia), December 2006.

Austrian Computer Society.

• A.J.G. Gray, W. Nutt, and M.H. Williams. Answering queries over incomplete

data stream histories. International Journal of Web Information Systems, 2007.

Invited submission that has been accepted to appear subject to minor revisions.
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Background

In this chapter the research topics that are relevant to this thesis will be introduced

with important results in the literature presented. The work of this thesis touches on

the areas of data integration, publish/subscribe systems, and data stream processing.

2.1 Data Integration

Data integration aims to allow a collection of heterogeneous distributed data sources,

e.g. a collection of e-commerce websites or a collection of relational databases, to be

queried as if they were a single homogeneous virtual database. To enable a collection

of data sources to appear as a virtual database requires a system to present a schema

for a user to query. The data integration system then transforms the query over the

schema into one or more queries against the available data sources in order to answer

the user query [25, 26, 28].

Wiederhold envisioned an architecture for data integration where collections of

sources are queried via a global schema as opposed to the individual source schemas

[23], see Figure 2.1 which has been reproduced from [29]. The architecture involves

the data sources being exposed as if they are a relational database through a wrapper

which is responsible for querying the local data source. A mediator component is

responsible for receiving a user query over the global schema and transforming it into

one or more sub-queries to pose to the wrappers. The final answer to the user query

is achieved by generating an execution plan which retrieves the data from the sources

and uses the mediator or a wrapper to combine the answer sets from the sub-queries,
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Mediator Catalogue

Client Client

Wrapper Wrapper

Database Database Database

Figure 2.1: Generic architecture of a data integration system.

e.g. for the execution of a join involving data from multiple data sources. The schema

of the virtual database is stored in the catalogue along with a mapping relating each

source with the schema of the virtual database.

2.1.1 Relating Data Sources to the Global Schema

As shown in Figure 2.1 the virtual database is made up of a collection of sources each

appearing as a separate relational database. Each source is managed independently,

and thus has its own local schema to which the data conforms. The sources are

integrated into the virtual database by means of a global schema. Ullman, in his

paper [24], identified two types of schema level integration which were named by

Levy [30] as “global as view”, often referred to as GAV, and “local as view”, often

referred to as LAV. Each of these will now be addressed in turn.

Global as View

In the global as view approach, the data made available by the data sources is de-

scribed as a view over the data sources. That is, each global relation is defined as a

query involving the data sources.

As an example of the global as view approach consider the global schema

Person(name, address, age, job), (2.1)
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to represent information about a person, storing their name, address, age and job

title. Now consider that there are two data sources in the system:

1. A company database storing information about employees. This contains the

relations

Employee(NI#, name, age, job) (2.2)

Address(NI#, address), (2.3)

where Relation (2.2) stores the name, age, and job title of an employee us-

ing their national insurance number as a key. Relation (2.3) stores addresses,

relating each address to an employee based on the national insurance number.

2. A university’s database storing information about the students, containing the

relation

Student(matric#, name, address, age), (2.4)

which stores the name, address, and age of the students based on their matric-

ulation number.

The Datalog [31] mapping in the catalogue, relating the local relations to the global

schema, would be

Person(name, address, age, job) ← Employee(NI#, name, age, job) &

Address(NI#, address) (2.5)

Person(name, address, age, ′student′) ← Student( , name, address, age). (2.6)

View (2.5) provides a tuple to the global relation Person when there is a tuple in

Employee and a tuple in Address which contain the same value for the attribute NI#.

View (2.6) provides a tuple to the global relation Person when there is a tuple in

Student. The “ ” is interpreted as a variable that appears only once and whose value

is not output.

Query planning in the global as view approach is reasonably straightforward. The

query posed over the global schema is transformed into queries over the data sources

by substituting the view definitions for each occurrence of a predicate. For example,

consider the query

q(address) ← Person(′john smith′, address, age, job), (2.7)
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which is asking for the address of all the people called ′john smith′. By replacing the

global relation occurring in the query with the view definitions (2.5) and (2.6) the

following queries are generated which the mediator must pose against the sources

q1(address) ← Employee(NI#, ′john smith′, age, job) &

Address(NI#, address) (2.8)

q2(address) ← Student(matric#, ′john smith′, address, age). (2.9)

The execution of these queries against the data sources must be co-ordinated by

the mediator. Techniques for co-ordinating the execution of these queries against

distributed sources are discussed in Section 2.1.3.

The drawback of the global as view approach is that adding a new data source

often requires the global schema to change. This means that to add a new data source,

all of the mappings for the existing sources must be altered.

Local as View

In the local as view approach the data made available by each data source is described

as a view over the global schema. That is, each relation made available by a data

source is described by a query over the global schema.

As an example of the local as view approach consider the global schema

Address(name, street, city) (2.10)

Phone(name, number). (2.11)

Relation (2.10) gives the name and address of someone, and Relation (2.11) gives the

name and phone number. Say there are two data sources in the system:

1. A phone book with the local schema

PhoneBook(name, city, number), (2.12)

which provides the name, city, and telephone number of someone.

2. An address book with the local schema

AddressBook(name, street, city), (2.13)

which stores the name, the street that they live on, and the city of someone.
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The mapping stored in the catalogue using Datalog notation which relates the global

relations to the available data sources would be

PhoneBook(name, city, number) ← Address(name, street, city) &

Phone(name, number), (2.14)

AddressBook(name, street, city) ← Address(name, street, city). (2.15)

The view definitions give the properties that tuples must have but they do not guar-

antee to provide all tuples that conform to the definition. There is also no guarantee

of consistency between the sources.

A query that may be posed against this system could be

q(city) ← Address(′john smith′, street, city), (2.16)

which would be locating the city of anyone called ′john smith′. It is not immedi-

ately clear how to generate an answer to this query as the tuples are stored in the

data sources which are related to the global schema by the view definitions (2.14)

and (2.15). Several algorithms [32, 33, 34, 35, 36, 37] have been developed to gen-

erate answers to a global query. These involve generating a rewriting of the query

over the global schema into queries over the available local schemas. For the example

query (2.16), the rewriting approach would generate the following queries over the

data sources

r1(city) ← PhoneBook(′john smith′, city, ) (2.17)

r2(city) ← AddressBook(′john smith′, , city). (2.18)

To retrieve the fullest set of answers to the query, both rewritings would be used

to retrieve the data. However, this will lead to duplicate answers if the data sources

contain the same information. In fact the situation is worse than this, if two instances

of the same city are returned then these cannot be distinguished between being two

different ’john smith’ in the same city and the same instance being duplicated by two

data sources [38].

The advantages of the local as view approach are twofold. The first is that data

sources can be added, or removed, from the data integration system without affecting

the views of any other source or the global schema. The second is that the content

15



Chapter 2. Background

of the sources may be described more accurately as conditions can be placed on the

attributes. For example, say that the AddressBook in (2.15) only contained addresses

in Edinburgh then the additional constraint

city = ′Edinburgh′, (2.19)

could be added to the view description.

2.1.2 Semantic Integration

The wrapper component has an important semantic role not mentioned thus far in

the discussion about local as view and global as view mappings. Consider again the

schemas for Person in the global schema (2.1) and Employee in the local schema (2.2).

Previously, it was implicitly assumed that the age attribute in both schemas used the

same units. However, it is feasible that the data in the source is actually stored as

a date of birth. The wrapper constructed for the source would need to be able to

convert the data in the source to the required format. For the age example here this

is straightforward, but other cases are a lot more complex. For example, involving

splitting attributes, problems of granularity of measurements or scales that are not

easily converted, e.g. qualitative scales, [39, 40]. This problem is not unique to data

integration and occurs in federated systems [41] and data warehousing [42]. As a

consequence, it has been a topic of intense research for a number of years [43, 44, 45].

2.1.3 Query Execution

The techniques for the organisation of the execution of a query plan over a set of

distributed data sources is the same for both the global as view and the local as view

approaches. An overview of techniques for distributed query execution are presented

in [29].

The techniques are based on the standard architecture for a data integration sys-

tem (Figure 2.1). The wrappers inform the mediator of the querying capabilities of

their source, and possibly cost estimates for executing queries. The mediator, based

on this information, can then pass the wrappers suitable sub-queries in order to exe-

cute the query plan as efficiently as possible. The mediator may have additional cost
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models, along with the capability to perform certain operations such as joins across

sources, to aid the efficient execution of queries.

Other relevant work in this area includes adaptive query processing and distributed

query processing on the Grid (See Section 3.1 for more details about Grid comput-

ing). The idea behind adaptive query processing is to adjust the execution of queries

based on the state of the system. Work has been conducted in this field since the

first relational query processors [46, 47], which kept statistics about the size of rela-

tions. These techniques have been refined and developed in order to be applied in a

distributed setting. An overview can be found in [48].

The ogsa-dai project1 [49] has developed services to publish and query data on

a Grid. The querying service, ogsa-dqp 2 [50], plans the execution of a query, that

may involve several data sources, by exploiting query execution services and parallel

query processing techniques.

2.1.4 Existing Data Integration Systems

This section gives a brief overview of some key data integration systems.

Infomaster: 3 follows a local as view approach to data integration [51, 36]. The

mediator component uses the inverse rules algorithm [36] which applies compu-

tational logic techniques.

INFOMIX: 4 follows a global as view approach focusing on using integrity con-

straints to combine data from inconsistent and incomplete data sources [52].

This allows it to reduce the number of sub-queries as some would never yield

an answer due to violating the integrity constraints.

Information Manifold: follows a local as view approach to data integration [33].

The mediator applies techniques for answering queries using views giving rise

to the bucket algorithm.

TSIMMIS: 5 follows a global as view approach to data integration [53]. The medi-

1http://www.ogsadai.org.uk/ (June 2007)
2http://www.ogsadai.org.uk/about/ogsa-dqp/ (June 2007)
3http://infomaster.stanford.edu/infomaster-info.html (January 2007)
4http://sv.mat.unical.it/infomix/ (January 2007)
5http://infolab.stanford.edu/tsimmis/ (January 2007)
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ator component applies substitution techniques to translate the query over the

global schema into a collection of queries over the local schemas.

2.2 Publish/Subscribe Systems

The aim of a publish/subscribe system is to provide a flexible, dynamic, loosely cou-

pled, scalable mechanism for distributed message delivery. The system consists of

producers of information (which publish events into the system) and consumers of

information (which subscribe to certain information). The system is responsible for

the delivery of events from the producers to the relevant consumers without either

being aware of the specific details of the other [13, 14].

There are two varieties of publish/subscribe systems, subject-based and content-

based, which are distinguished by how events are matched to subscriptions. Early

publish/subscribe systems were all of the first type, subject-based6. In subject-based

systems messages are tagged with a topic to which they conform. The topics available

are defined by the system and can be arranged into a hierarchy. The matching of

subscriptions to messages is relatively straightforward as the subscriber declares what

subjects they are interested in. The subjects each have a unique key and this can

be quickly matched. For example, consider a system for publishing the current price

of stock. The subjects available in the system could be different types of company,

e.g. banks, electricity suppliers, etc. A subscriber interested in the price of electricity

suppliers would subscribe to the electricity topic.

The second variety are content-based systems where subscribers register a pattern

or query. For example, in a stock situation a subscriber could be interested in all

electricity stock that has a price of less than 200 pence. This would be expressed as

{type = electricity, price ≤ 200}. (2.20)

The advantage of the content-based systems is that the subscribers do not need to

receive messages that they are not really interested in. However, the task of matching

messages to subscriptions is more computationally demanding.

The task of matching events to content-based subscriptions is performed by a

6Also referred to as topic-based.
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type = electricity

type = electricity,
52W low > 100

type = electricity,
price <= 200

Figure 2.2: Matching tree for two stock subscriptions.

mediator sometimes called a broker. The mediator must be able to filter messages

according to the subscriber’s subscription but in a scalable manner. The majority

of systems achieve this through a matching tree algorithm [54]. In a matching tree

algorithm, the subscriptions are preprocessed so that the commonality between two

subscriptions can be exploited. This results in the leaves of the tree containing sub-

scriptions but the nodes contain filter items. For example, consider the subscription

in Equation (2.20) and the subscription

{type = electricity, 52 Week low > 100}. (2.21)

These would form the matching tree shown in Figure 2.2. The matching of events to

subscriptions must be conducted for each event published into the system.

There have been a variety of architectures used to implement publish/subscribe

systems. These can be classified as either client-server or peer-to-peer. Within the

client-server model, the publishers and subscribers are the clients and there are servers

which are responsible for receiving, possibly storing, and forwarding the events. Sev-

eral different topologies have been adopted: star topology with one central server,

hierarchical topology with servers organised into a hierarchy, or irregular polygon

topology with different protocols for server-server connections and server-client con-

nections.

In the peer-to-peer model, each peer takes on part of the responsibility of the server

in the client-server model. Again, different topologies of peer-to-peer networks have

been used. For example, every peer being equal with connections to some, possibly

all, other peers or super peer networks where each peer is connected to a super peer

and the super peers are interconnected in some way.
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An area which still requires additional research is that of security. Many of the

systems require publishers and subscribers to authenticate themselves to the system

in order to be able to publish or retrieve data. There have also been mechanisms

developed to limit the events that an individual client may publish or subscribe to.

Thus limiting certain events to certain groups of users. However, content-based sys-

tems publish their information as plain text in order for the matching algorithms to

function. Some preliminary work on encrypting messages has been presented in [55],

although due to the repetition in the content of messages, the encryption mechanism

can be broken more easily.

Publish/subscribe has been touted as a generic mechanism for passing events

around in a distributed manner. However, there has yet to be an application identi-

fied that fits the generic publish/subscribe paradigm. An analysis of the applications

suggested for publish/subscribe, which includes video on demand, software updates,

travel applications, and on-line gaming, show that each has different demands on a

messaging system and thus no single standard has so far been agreed [56].

2.2.1 Existing Publish/Subscribe Systems

This section presents several publish/subscribe systems detailing whether they are

subject or content based, their architecture, and other significant details.

Echo: 7 was developed to cope with high performance sharing of data, e.g. visual-

isations [57]. It is predominantly a content-based system although there are

provisions for the subscriber to perform filters. It is based on a peer-to-peer

network and matching is performed on the subscriptions.

Gryphon: 8 has been developed for the distribution of large volumes of data in

real-time with thousands of clients on a public network [54, 58]. It is a content-

based system with a client-server architecture where the servers are organised

into fully connected cells with redundant links between cells. It uses a matching

tree algorithm with expressions over the attributes.

7http://www.cc.gatech.edu/systems/projects/ECho/ (April 2007)
8http://www.research.ibm.com/distributedmessaging/gryphon.html (April 2007)
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JEDI: has been developed as an internet wide object-oriented event notification sys-

tem for Java [59]. It is a content-based system with a hierarchical client-server

architecture. Matching events to subscriptions is achieved through a simple

pattern matching algorithm.

Scribe: 9 has been developed as a large scale, decentralised event delivery system

[60]. It is a subject-based system in a peer-to-peer network providing best-effort

semantics for messages. Matching is performed by numeric keys in a look up

table and message delivery relies on the Pastry [61] peer-to-peer network system.

SIENA: 10 has been developed as a generic internet scale event notification system

[62]. It is a content-based system in a client-server architecture. It uses a

variation on the matching tree algorithm.

2.3 Data Streams and Data Stream Processing

Digital streams can be produced by many sources, e.g. audio, video, sensors, and

monitoring scripts. The research challenges for audio and video streams tend to

focus on quality of service issues, e.g. ensuring that smooth playback is possible while

delivering a video stream to a user in real time [63]. Those for streams from sensors

and monitoring scripts focus on processing the data in the stream. The subject of this

thesis is making streams of data available for processing and this will be the focus of

the subsequent discussion.

Processing data as a stream is a new paradigm for handling data. A data stream

is an append only, time varying, unbounded, sequence of data [15]. Streams of data

appear in many different situations, e.g. financial applications [1, 2], sensor networks

[3, 4], and monitoring information [5, 6, 7, 8, 9, 10, 11]. These stream applications

will each have their own characteristics, e.g. data may arrive in bursts or at a regular

frequency, and the users will have differing demands, e.g. the latest stock price or

looking for patterns of attack in network monitoring data. The characteristics of data

streams introduce interesting new research questions such as:

9http://research.microsoft.com/~antr/SCRIBE/ (April 2007)
10http://www-serl.cs.colorado.edu/~carzanig/siena/ (April 2007)
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• How can a data stream be modelled?

• How can a data stream be queried?

• How can a data stream that is infinite be processed?

• How can the history of an infinite stream be stored in bounded storage?

These have started to be addressed by the research into data stream systems, the

results of which will be outlined below.

2.3.1 Data Stream Management Systems

While some of the use cases for storing, managing, and querying data streams are

similar to those for a database management system (dbms), there are some significant

differences. In particular, how a data stream system should cope with updates to the

data.

A dbms presents a consistent, unchanging instance of a database for the duration

of a transaction, even when the database is being updated rapidly. This means that

the operations in a transaction are unaware of the changes made to a database by

another transaction that is running in parallel. On the other hand, users of stream-

ing data are often interested in receiving the “freshest” data possible, i.e. they are

interested in the changes to the data. Therefore, techniques for storing, managing,

and querying data streams are being developed with the nature of streams in mind

resulting in data stream management systems (dsms) [15, 16].

Some centralised dsmss have already been developed and implemented, e.g. Au-

rora [64], stream [65], TelegraphCQ [66], mostly in research projects in the United

States of America. These systems support the querying and management of streams.

Figure 2.3 [16] presents an abstract architecture for a dsms. It consists of compo-

nents for handling input data streams, processing and querying those streams, and

outputting answer streams.

The input monitor is responsible for receiving tuples from the input streams.

Typically it will try and receive all data from the streams. However, if the arrival

rate is too high for the system to cope with, the input monitor will drop some tuples.

The input monitor also maintains statistics about the arrival rates of the streams.
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Figure 2.3: Abstract architecture for a Data Stream Management System.

A dsms will typically have three storage areas. The working storage is responsible

for storing those tuples that are required for answering the current queries. The

summary storage is used to store summary information about the stream, e.g. the

average value for a specific period of time. The static storage is used for both meta

information about the streams and for storing static, or stored, information, e.g. the

locations of the sensors that generate the data streams.

The dsms also stores the queries being posed by the users and has a query processor

for generating answers to these queries. The query processor communicates with the

input monitor so that the query plans can be adapted to suit the arrival characteristics

of the streams. There is also an output buffer for streaming the answers to the users.

2.3.2 Queries over Data Streams

A query posed over a database is passed to the query execution engine of the dbms

where it is optimised for the data currently in the database. The query is then

evaluated once over the set of data in the database at the instant the query is posed.

This model of querying the data currently in the database is not consistent with the

characteristics of a data stream, where the data is continuously arriving and the user

is interested in the changes in the data. One approach could be to store the data

stream to a database and then the user could periodically pose their query over the

history of the stream. However, this still does not match the continuous nature of a

data stream.

In [27], the authors introduced the idea of a continuous query. A continuous query
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is registered with the dsms, and every time a tuple t arrives that is an answer to the

query, the tuple t would be returned on the answer stream to the query.

There has been a lot of research carried out to devise a suitable query language

for processing data streams. It is not a straightforward task to devise a language

which has both a meaningful and well-defined semantics for both streams and stored

relations. For example, consider a join being carried out on two streams. When a

join is conducted in a database, all of the tuples in the two relations are considered.

However, a data stream is unbounded, and an answer must be returned immediately.

This has led to the introduction of window operators which limit the scope of the

stream considered, either by the number of tuples or in time, to allow a partial join to

be performed. Four types of windowing operator have been proposed in the literature.

Snapshot Windows: which define a specific part of a stream in time, i.e. the window

has a constant start and end time [67].

Landmark Windows: which define a window starting at a particular moment in

time and extends as the stream arrives, i.e. it has a constant start time but

variable end time [68].

Sliding Windows: which define a specific size of window that moves in time as the

stream is published, i.e. it has variable start and end time but constant size in

time or space [68].

Jumping Windows: which also define a specific size of window but it is not recom-

puted every time a new tuple is added to the stream, the re-evaluation rate of

the window is also controlled and as such it jumps along the stream [69].

One approach, used in the Aurora system [64], is to use a procedural language.

Specifically, in Aurora a query is constructed by selecting boxes (which represent

operators such as selection or join) and then connecting these boxes together with

directed edges.

An alternative approach, being followed in the stream project, is to devise a

declarative query language specifically for streams, something akin to sql for a re-

lational database. This has resulted in the Continuous Query Language (cql) [70].
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Within cql there is support for specifying the size of the window, the ability to pro-

cess both static and stream data, and the ability to control the execution rate and

the returned answer, i.e. how it is streamed back.

More recently there has been consolidation between the various stream projects

resulting in the definition of StreamSQL11 [71]. Like cql, StreamSQL is based on

sql and is a declarative language. StreamSQL further refines the concepts, e.g. by

providing additional windowing constructs, and combines the advantages of the pre-

vious approaches. However, the language has not yet been implemented in a stream

processing system.

2.3.3 Existing Data Stream Management Systems

The following gives a brief overview of some of the existing dsmss.

Aurora 12 is a workflow-oriented system working with sensor data [64, 72]. It has a

procedural query language where users connect operators with directed edges.

Within this query language there is support for a wide variety of window oper-

ators but it is only capable of handling streaming data, i.e. there is no support

for stored data.

STREAM 13 is a general purpose dsms that is able to process both stored and stream

data [15, 65]. The project has modelled data streams using a relational approach

and uses a sql like query language called the Continuous Query Language (cql)

[70]. At present there is only support for one type of window operation.

TelegraphCQ 14 is a continuous query processing system for processing sensor data

[66]. The system has support for a wide variety of window operators along

with relational operators. The project focuses on adaptable query processing

based on the arrival rate of the input streams. Novel data structures have been

developed for processing streams including Eddies [73] which are able to adapt

their processing on a per tuple basis and Flux [74] which can repartition stateful

operators such as a join during query execution.

11http://www.streamsql.org (June 2007)
12http://www.cs.brown.edu/research/aurora/ (April 2007)
13http://infolab.stanford.edu/stream/ (April 2007)
14http://telegraph.cs.berkeley.edu/ (April 2007)
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2.3.4 Distributed Stream Processing

The dsmss presented above have focused on processing data streams at some cen-

tralised point. However, by their nature, data streams are often highly distributed.

Research has also been conducted in processing data streams in a distributed manner.

This section does not address wireless sensor networks as they have their own distinct

problems, e.g. power management, unknown communication networks, high failure

rates of nodes [75].

Borealis 15 is a distributed stream processing system [18] based on the Aurora sys-

tem. A Borealis node consists of an Aurora stream processing engine along

with a couple of components for dealing with the distributed setting that were

initially developed in the Medusa project [76]. The first component keeps track

of all of the streams known to the system. This allows a user to construct a

query without knowledge of where the stream originates. The second compo-

nent allows the system to balance the load of the queries across several nodes.

Each node is “selfish” in its load management, which it is claimed results in an

equal balance across nodes.

dQUOB 16 is a distributed stream processing engine [19]. It uses precompiled trigger

queries, called “quoblets”, to filter and process streams close to their origin.

There is no built-in support for processing static data, although a quoblet can

be used to trigger some external function.

StreamGlobe 17 is a Peer-to-Peer system for publishing and querying data streams

of astronomical data on a computational Grid [20]. The system only supports

continuous queries. Queries are optimised by combining common query opera-

tors and pushing operators as close to the data source as possible. The system

has no mechanism for storing the history of a data stream and making it avail-

able for querying.

15http://www.cs.brown.edu/research/borealis/public/ (April 2007)
16http://www.cs.indiana.edu/~plale/projects/dQUOB/ (April 2007)
17http://www-db.in.tum.de/research/projects/StreamGlobe/ (April 2007)
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2.4 Summary

This chapter has introduced the research topics of data integration and stream pro-

cessing. It showed that data integration allows multiple, autonomous, distributed

stored data sources to be accessed through a common global schema. That is, the

global schema describes a virtual database over which queries can be posed and an-

swers returned by accessing the actual data sources.

Details of techniques for processing streams of data were also presented. Most of

this research has been performed in a centralised setting although the techniques are

beginning to be applied in a distributed manner. However, there has been no research

on how to integrate multiple, autonomous, distributed streams.

The next chapter presents a motivating problem for integrating distributed data

streams.
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Motivation: Grid Information and

Monitoring Systems

The work of this thesis has been motivated by the problem of providing up-to-date

status information about the resources available on a computational Grid. This prob-

lem is addressed by Grid information and monitoring systems which encompass Grid

information systems, Grid monitoring systems, and unified Grid information and

monitoring systems.

Section 3.1 provides a brief introduction to the application area of Grid computing

which aims at sharing computational resources from multiple, autonomous organisa-

tions. This requires middleware that allows a computational resource to interact on

a Grid. A component of any Grid middleware is the information and monitoring

system.

The information and monitoring system allows Grid resources, and other Grid

middleware systems, to know the existence and status of the available Grid resources.

Section 3.2 considers the requirements for a Grid information and monitoring system,

i.e. the types of information required by other middleware systems and how this should

be presented, along with functional requirements.

Existing approaches to Grid information and monitoring systems are presented in

Section 3.3. These existing systems are analysed against the identified requirements

for a Grid information and monitoring system.
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3.1 Grid Computing

This section introduces the idea of computational Grids, the kind of software that

is required to enable a computational Grid, and details of some Grid projects. Grid

computing will provide the environment for integrating streams of data.

3.1.1 Computational Grids

A computational Grid is a collection of connected, geographically distributed comput-

ing resources belonging to one or more different organisations [77, 12]. Typically the

resources are a mix of computers, storage devices, network bandwidth and specialised

equipment, e.g. supercomputers or databases. A computational Grid provides instan-

taneous access to files, remote computers, software and specialist equipment [78]. To

a user, a Grid behaves like a single virtual supercomputer.

The idea of a computational Grid uses the power grid as a metaphor for sharing

computational resources. In the same way as one plugs an electric device into the

power grid and gets instant electrical power, a user should be able to “plug” into a

computational Grid and gain instant computational power. Thus, a Grid would ap-

pear as a single virtual supercomputer comprising the individual computing resources

connected to the Grid at any moment in time. The metaphor can be carried along

further. Just as electricity in the power grid can be provided by several companies,

the computational resources in a computational Grid may be provided by several dif-

ferent organisations. Moreover, it must be possible to “charge” the user of the Grid

for use of these resources. The payment may be in the form of money based on the

amount that the resource was utilised, or by making their own resources available to

other Grid users.

3.1.2 Grid Projects

The concept of a computational Grid has existed since the mid 1990s and has grown

out of the distributed and high performance computing communities. There have now

been several projects to construct Grids to perform different tasks. These include:
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CrossGrid: 1 A European Union project running from 2001 to 2005 with the aim of

developing, implementing and exploiting new Grid components for interactive

compute and data intensive applications such as visualisations. The project

aimed to use components developed in the DataGrid project as well as develop

its own tailored Gridware [79].

DataGrid: 2 A European Union project running from 2001 to 2004 with the aim of

developing and testing a technological infrastructure and middleware that will

cope with the vast amounts of data produced in scientific experiments such as

the Large Hadron Collider [80].

EGEE: 3 A continuation of the DataGrid project running from 2004 and anticpated

to end in 2008. The emphasis in the EGEE project is on providing a production

quality Grid. The EGEE project should result in scientists having 24/7 access

to major computing resources across the globe [81].

Grid2003/Grid3: 4 A collaboration beginning in 2003 involving more than 25 sites

in the USA and Korea that collectively provides more than 2000 CPUs. Grid3

was able to process more than 700 concurrent jobs from a number of scientific

domains [82].

TeraGrid: 5 An American project aiming to build a Grid for scientific research ca-

pable of 20 teraflops of computation, distributed across 5 sites in the USA, with

1 petabyte of storage, and a network bandwidth of 40 Gigabits per second [83].

The project began in 2001 and is expected to continue until 2010.

3.1.3 Components of a Grid

Each Grid requires middleware to enable the resources to behave as a virtual com-

puter. Several sets of middleware have been developed. Currently, the two most

1http://www.crossgrid.org (February 2007)
2http://eu-datagrid.web.cern.ch (February 2007)
3http://www.eu-egee.org/ (February 2007)
4http://www.ivdgl.org/grid2003 (February 2007)
5http://www.teragrid.org (February 2007)
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widely used are the Globus Toolkit6 [84], and gLite 7 [85], both of which achieve

similar functionality and consist of several services.

The services of the middleware mimic the behaviour of an operating system on a

computer. The components of the DataGrid/gLite middleware, and their interactions,

can be seen in Figure 3.1 and are similar to those presented in [77].

User Interface: allows a human user to submit jobs, e.g. “analyse the data from a

physics experiment, and store the result”.

Resource Broker: controls the submission of jobs, finds suitable available resources

and allocates them to the job.

Logging and Bookkeeping: tracks the progress of jobs and when jobs are com-

pleted informs users as to which resources were used, and how much they will

be charged for the job.

Storage Element (SE): provides physical storage for data files.

Replica Catalogue: tracks where data is stored and replicates data files as required.

Computing Element (CE): performs the processing of jobs, taking data from stor-

age elements.

Monitoring System: monitors the state of the components of the Grid and makes

this data available to other components.

3.2 Requirements for a Grid Information and Mon-

itoring System

The purpose of a Grid information and monitoring system is to make available to

users and other Grid components details about the resources on a Grid, along with

their status information. This is separated from the task of capturing monitoring

information, which is performed locally at the Grid resource, e.g. computing element,

6http://www.globus.org (February 2007)
7http://glite.web.cern.ch (February 2007)
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Figure 3.1: The major components of DataGrid/gLite middleware.

storage element or between network nodes, and for which several tools exist [86, 87].

For example, network monitoring measurements can be made using the PingER tool

[88] which can be used to measure the throughput between two network nodes. The

results of these local monitoring tasks are then made available across the Grid by the

information and monitoring system.

As a basis for discussing the requirements that such a system should meet, the

following use cases are considered. These use cases were originally published in [89]

and similar cases have been considered in [90].

1. A resource broker needs to quickly (within 10 seconds) locate a computing

element (CE) that has 5 CPUs available, each with at least 200 MB of memory.

The CE should have the right software installed, and the user must be authorised

to use it. The throughput to a storage element (SE) needs to be greater than

500 Mbps.

2. A visualisation tool, that allows users to monitor the progress of their jobs,

needs to be updated whenever the status of a job changes.

3. Network administrators need to interrogate the past state of the network so that

typical behaviour can be ascertained and anomalies identified.
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3.2.1 Publishing Data

There are many different kinds of information about a Grid, which come from numer-

ous sources. The following are examples:

• Measurements of network throughput, e.g. made by sending a ping message

across the network and publishing the measurements (use cases 1 and 3 above);

• Job progress statistics, either generated by annotated programs or by a resource

broker (use case 2);

• Details about the topologies of the different networks connected (use cases 1

and 3);

• Details about the applications, licences, etc., available at each resource (use

case 1).

This monitoring data can be classified into two types based on the frequency with

which it changes and depending on the way in which it is queried:

Stored data (pools): This is data that does not change regularly or data that does

not change for the duration of a query, e.g. data that is being held in a database

management system with concurrency control. Typical examples are data about

the operating system on a CE, or the total space on a SE (use case 1).

Dynamic data (streams): This is data that can be thought of as continually chang-

ing, e.g. the memory usage of a CE (use case 1), or data that leads to new query

results as soon as it is available, for example the status of a job (use case 2).

A core requirement of a Grid information and monitoring system is that it should

allow both stored and streaming data to be published. The act of publishing involves

two tasks:

1. Advertising the data that is available, and

2. Answering requests for that data.
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3.2.2 Locating and Querying Data

Grids typically consist of a number of geographically distributed sites where each

site has several resources, e.g. clusters of computers and storage devices, which are

connected by high speed LAN connections. Each resource would be instrumented

with scripts to publish their status information. The sites on a Grid can be located

around the world and are connected by wide-area network links. For example, the

Large Hadron Collider computational Grid consists of resources provided by over 175

research institutions located in Asia, Europe, and North America8.

As such, data about Grid resources will be scattered across the entire fabric of the

Grid. The information and monitoring system must provide mechanisms for users of

the Grid to locate data of interest. In addition, users need a global view over the data

published in order to understand relationships between the data and to query it.

Since a Grid information and monitoring system should be able to publish both

stored and streaming data it should also be possible to query both types of data,

either separately or in a combined manner. It should be possible to ask about the

state of a stream right now (a latest-state query—use case 1), continuously from now

on (a continuous query—use case 2), or in the past (a history query—use case 3).

Up-to-date answers should be returned quickly, e.g. in use case 1 the resource

broker requires that the data is no more than a few seconds old. To be accepted by

users, the query language should capture most of the common use cases, but should

not force a user to learn too many new concepts.

3.2.3 Scalability, Robustness, and Performance

A Grid is potentially very large: in February 2007, the Large Hadron Collider Grid9

had 32,412 CPUs available, located at 177 sites throughout the world, each producing

status information. In the normal use of a Grid, the fabric will be unreliable: network

connections will fail and resources will become inaccessible.

It is important that the information and monitoring system can scale. It needs to

be able to handle a large number of sources, publishing potentially large amounts of

8http://goc.grid-support.ac.uk/gridsite/monitoring/ (February 2007).
9http://goc.grid-support.ac.uk/gridsite/monitoring/ (February 2007).
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data. Likewise there will be a large number of users of monitoring information, both

humans and Grid components, who require correct answers in a timely manner. The

information and monitoring system should not become a performance bottleneck for

the entire Grid. It should be able to cope with large numbers of queries received at

the same time.

The information and monitoring system itself should be resilient to failure of any

of its components, otherwise the whole Grid could fail along with it. The information

and monitoring system cannot have any sort of central control as resources will be

contributed by organisations that are independent of each other.

3.2.4 Security

Users of the Grid may only use resources for which they are authorised. Only if they

authenticate themselves should they be granted access to those resources. The Grid

information and monitoring system should respect these authorisation rules and only

provide a user information on resources they are allowed to use.

Similar mechanisms need to be in place to authenticate the sources that wish to

publish data. For example, if a rogue data publisher were able to say that it was

always lightly loaded it could distort the distribution of jobs by a resource broker.

The data sources must also respect the authorisation rules that have been imposed

and only pass data on to those who are authorised to “see” it.

3.3 Existing Systems and Possible Approaches

This section considers the possible approaches that could be followed in developing

a Grid information and monitoring system. Several existing Grid monitoring, Grid

information, and unified Grid information and monitoring systems are also considered

to see if they meet the requirements identified in Section 3.2.

3.3.1 Possible Approaches

Chapter 2 provided details of publish/subscribe systems, data stream systems, and

data integration systems. However, none of these existing types of systems nor stan-
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dard database systems are suitable for the requirements of a Grid information and

monitoring system.

It has been suggested in [91] that an information and monitoring system could be

implemented as a relational database. The database would store all data about the

status of the Grid and the users would be able to query it. Database systems already

provide the security mechanisms required for a Grid. However, a dbms does not meet

many of the other requirements identified. For example, it takes time to load all the

data into a single repository and this would require a large amount of storage space.

On top of this, the database would be a single point of failure. If the database became

uncontactable then no monitoring information would be available. Additionally, this

approach would not scale to the size required for a typical Grid and would be unable

to cope with the streaming nature of the data.

While publish/subscribe systems (Section 2.2) provide a mechanism to pass mes-

sages from publishers to subscribers without either needing to know the details of the

other, there is no inbuilt mechanism to store and query historical data. Additionally,

the fact that monitoring data will be streaming does not meet the periodic publishing

for which publish/subscribe systems are designed.

Most of the data stream systems (Section 2.3.3) developed to date are centralised

and so have many of the same problems as the database approach, i.e. a central point

of failure. The distributed data stream systems (Section 2.3.4) while overcoming the

central point of failure problem, still do not meet all of the requirements. For example,

the dquob system [19] must pre-compile all of the continuous queries and so is less

able to deal with the dynamic nature of a Grid with ad hoc queries. Additionally,

these systems do not support queries over the past state of the system.

While following a data integration approach (Section 2.1) overcomes the problems

of using a single database, and can be made to provide security by imposing a suit-

able mediation mechanism, there is currently no system or theory that can integrate

streams of data.

So far, the existing systems and approaches considered in Chapter 2 do not meet

the requirements identified in Section 3.2 for a Grid information and monitoring sys-

tem. However, an approach combining the ideas of data streams, publish/subscribe

systems, and data integration could provide suitable functionality.
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3.3.2 Proposed Theoretical Architectures

In the literature there have been two proposals for a generic model for a Grid informa-

tion and monitoring system. The first was the Grid Monitoring Architecture (gma)

which was proposed as a general approach to Grid monitoring. The second was the

Generic Monitoring and Information System Model which has been proposed for the

purpose of comparing the performance of three existing systems.

Grid Monitoring Architecture

The Grid Monitoring Architecture (gma) was proposed by Tierney et al. [92] and has

been recommended by the Global Grid Forum, now the Open Grid Forum10, for its

scalability. It is a simple architecture comprising three main types of actors:

Producers: Sources of data on the Grid, e.g. a mechanism to allow a sensor to

publish its readings, or a description of a network topology.

Consumers: Users of data available on the Grid, e.g. a resource broker, or a system

administrator wanting to find out about the utilisation of a Grid resource.

Directory Service: A special purpose component that stores details of producers

and consumers to allow consumers to locate relevant producers of data.

The interaction of these actors is schematically depicted in Figure 3.2. A producer

informs the directory service of the kind of data it has to offer. A consumer contacts

the directory service to discover which producers have data relevant to its query.

A communication link is then set up directly with each producer to acquire data.

Consumers may also register with the directory service. This allows new producers

to notify any consumers that have relevant queries.

The gma also proposed an Intermediary component that consists of both a con-

sumer and a producer. An intermediary may be used to forward, broadcast, filter,

aggregate or archive data from the producers. The intermediary then makes this data

available to the consumers from a single point in the Grid.

By separating the tasks of information discovery, enquiry, and publication, the

gma is scalable. However, it does not define a data model, query language, or a

10http://www.ogf.org (February 2007)
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Service
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Producer details

Register consumer/Find producers
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Register producer/Find consumers

Subscribe
Events
(data)

Figure 3.2: The components of the gma and their interactions. (The dashed lines

depict the exchange of control messages whilst the solid line shows the flow of data.)

protocol for data transmission. Nor does it say what information should be stored in

the directory service. There are no details of how the directory service should perform

the task of matching producers with consumers.

Generic Monitoring and Information System Model

The Generic Monitoring and Information System Model was proposed by Zhang et al.

[93, 90] to allow them to compare the performance of three monitoring and information

systems. It is a simple architecture consisting of four components:

Information Collector: Sources of data about a single aspect of a resource on the

Grid, e.g. a sensor, probe, or simple program to generate data describing some

property of a Grid resource. A single Grid resource will run several information

collectors to provide data about different aspects of the resource.

Information Server: Collects data from several information collectors. The infor-

mation server presents a snapshot of all of the data available about a single Grid

resource.

Aggregate Information Server: Collects and aggregates information from several

information servers.

Directory Server: Provides details of all the components of the information and

monitoring system along with data published about the status of the resources

on a Grid.
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Figure 3.3: The components of the Generic Monitoring and Information System Model

and their interactions.

The interaction of the components of the Generic Model are depicted in Figure 3.3.

A client may query the information server, aggregate information server, or the di-

rectory server to retrieve data about the status of the Grid.

The idea of the information server is that it collects all the monitoring data about

a single Grid resource. The aggregate information servers would then collect all of

the data of the resources of a single site and make this data available.

The model fails to separate out the tasks of discovering where data is published

and retrieving that data. Both of these tasks are provided by the directory server

which stores details of the information providers in the monitoring system together

with the actual monitoring data. As a Grid scales to larger numbers of resources, this

could become a problem as the directory server may not be able to handle the volume

of data and become a performance bottleneck. The lack of separation also begs the

question, what is the purpose of the aggregate information server if this functionality

is built into the directory server?

Like the gma, the Generic Monitoring and Information System Model does not

provide any implementation details such as a data model, communication protocol,

or how to perform the matchmaking of client queries to monitoring data.
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3.3.3 Existing Systems

A number of Grid monitoring, Grid information, and unified Grid information and

monitoring systems have been developed. Each has been developed with a different

emphasis and aim. Some have been tailored to meet the requirements of a specific

Grid, e.g. code [94] for the NASA Information Power Grid [95], while others are

prototype implementations to prove the correctness of an approach, e.g. pyGMA

[96] for the gma.

Many Grid monitoring systems only provide specific types of information. For

example, Autopilot [97] used in the grrads project [98] and G-PM/OCM-G [99] in

the CrossGrid project [79] have been developed to track the progress of jobs running

on the Grid, while systems such as the Network Weather Service (NWS) [100, 9] have

been developed to monitor the status of the network resources on the Grid.

Systems such as scalea-g [101], Mercury [102], and the Monitoring and Discover

Service/System11 (mds) [103, 104] of the Globus Toolkit [84] have been designed as

unified Grid information and monitoring systems so that they can cover all aspects

of data about the Grid. These can be seen to be implementations of the gma, with

scalea-g and mds both using standard data models.

scalea-g uses xml as a data format and makes use of the XPath and XQuery

query languages. It consists of sensor managers, a client service, and a directory

service. It was originally developed as a parallel machine monitor. So far it has only

been deployed on a small testbed with no indication of how it will scale to a large

Grid.

mds is the most widely used of the existing monitoring systems, and has gone

through several releases. mds 2 [103] has been widely deployed throughout the world

and uses the Lightweight Directory Access Protocol (LDAP) [105] as its data model

and query mechanism. mds 3 moved to an xml data format but was only deployed

in a limited number of situations. The latest release, mds 4 [104] has continued using

xml as its data format and has been provided as a set of Web Services. Further

details of mds are provided below.

A comprehensive comparison of systems that can provide monitoring data or in-

11Versions 1, 2, and 3 were called the Monitoring and Discovery Service. As of version 4, it is now

called the Monitoring and Discovery System.
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formation about a Grid can be found in [106].

Monitoring and Discovery Service/System (mds)

The main components of mds are:

Information Providers: Publish monitoring data about one aspect of a Grid re-

source.

Information Services: Collect all the data about one Grid resource.

Aggregate Directories: Hierarchically organised to collect all the data about re-

sources at one site, one virtual organisation, etc.

Client: An interface, e.g. browser or program, through which a user can pose queries.

The aggregate directories at the site level in the hierarchy forward their data to other

aggregate directories at higher levels e.g. the virtual organisation level. It can be

seen that mds implements the gma. An information provider plays the role of a

producer, a client plays the role of consumer, an aggregate directory plays the role of

directory server, and both aggregate directories and information servers play the role

of intermediaries.

Data is also organised hierarchically in a structure that provides a name space,

a data model, wire protocols and querying capabilities. mds 1 and 2 were based on

the LDAP data model and query language. In mds 3, the data model was changed

to xml with support for the query languages XPath and XQuery. The latest version

continues to use an xml data model but queries are now posed using Web Services

Notification (WS-N) [107] although there is still support for XPath and XQuery.

Although the hierarchical architecture makes it scalable, mds does not meet other

requirements outlined in Section 3.2. Firstly, hierarchical query languages have limi-

tations. For one, the hierarchy must be designed with popular queries in mind. More-

over, there is no support for users who want to relate data from different sections of

the hierarchy—they must process these queries themselves.

Secondly, to be able to offer a global view of the Grid to users, a hierarchy of

aggregate directories must be set up manually—information providers, information

servers and aggregate directories need to know which information server/aggregate
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directory further up the hierarchy to register with. The system does not automate

this, nor does it recover if any component in the hierarchy fails.

Lastly, mds 2 only supports queries for the most recent information with no as-

surance that the answers are up-to-date. Support for continuous queries has been

provided in mds 3 and 4 but it is unclear how well it is able to handle streams of

data.

It has also been left up to the user to create and maintain archives of historical

information by (i) storing the various latest-state values that have been published via

mds in a database and by (ii) providing an interface to allow the system to access the

database. This approach would require considerable effort on the side of the user.

3.4 Summary

This chapter has introduced the application area of Grid computing which aims to

share computational resources from multiple organisations as if they were part of a

virtual supercomputer. This requires Grid middleware which allows a computational

resource to interact with other resources on the Grid.

At the heart of any Grid middleware is the information and monitoring system.

The requirements for this system were identified. Existing approaches and systems

were considered against these requirements and shown not to meet all of them in

their separate ways. It was argued that an approach involving the integration of data

streams would be appropriate.

The next chapter will introduce a generic architecture for integrating streams of

data that will meet the requirements of a Grid information and monitoring system.
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A Stream Integration System

This chapter proposes an architecture for a stream integration system that can in-

corporate both streaming and stored data sources. While the architecture has been

motivated by the problem of a Grid information and monitoring system, the design

itself is generic and could be used in any scenario where there is a need to integrate

distributed sources.

Section 4.1 provides the details of the architecture for a stream integration sys-

tem. In Section 4.2 details of the Relational Grid Monitoring Architecture (r-gma),

which is a partial implementation of the proposed architecture, will be given. Finally,

Section 4.3.2 will compare the stream integration approach with some of the existing

systems detailed in Section 3.3.3.

4.1 An Architecture for a Stream Integration Sys-

tem

This section presents the architectural design for a stream integration system. The

system is based on the relational data model. It applies the ideas for integrating

sources of stored data to sources of stream data and allows the two types of data to

be mixed. The focus of the design is on the ideas and rationale which will draw upon

the motivating application of a Grid information and monitoring system. Details of

the theory required to realise the architecture will be presented in Chapters 5 and 6.

Details of the architecture have previously been published in [89, 108, 109].
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4.1.1 A Virtual Dataspace

As stated in the requirements for a Grid information and monitoring system (Sec-

tion 3.2), users need to be able to locate data of interest using the information and

monitoring system. The difficulty is that data is scattered across the whole Grid. It

would be useful if the system could operate like a database, presenting a schema over

which queries can be posed. However, as already stated, it would not be practical to

stream all data into a central database, as a database management system (dbms)

would introduce delays in answering queries while it waits for data to load and the

dbms would become a single point of failure for the Grid. Therefore, the stream inte-

gration system should create the illusion of a dataspace through which all the data is

available. This virtual dataspace would allow access to both the streaming and stored

data in the system.

The techniques of data integration, detailed in Section 2.1, allow a virtual database

to be created from a set of distributed source databases. Such data integration systems

use a mediator [23] for matching queries posed over the global schema with sources

of relevant information. The proposed stream integration system follows a local-

as-view approach to data integration, where data sources describe their content as

views on the global schema. This provides the flexibility of being able to add and

remove sources without reconfiguring the global schema although query answering is

not straightforward.

The techniques in the literature on data integration can only handle stored data

sources. The stream integration system needs to be able to publish and integrate

both streams of data and stored data, to present a virtual dataspace. A theoretical

model and techniques for integrating data streams have been developed and will be

discussed in Chapters 5 and 6.

4.1.2 Roles and Agents

The stream integration system takes up the generic consumer and producer metaphors

of the Grid monitoring architecture (gma) [92] and refines them. The stream inte-

gration system would allow a client to play the role of an information producer or a

consumer. The components of the stream integration system and their interactions
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Figure 4.1: The roles and agents of the stream integration system design along with

their interactions.

are shown in Figure 4.1. A discussion of these is provided below.

Producers

In order that both stored data and stream data can be published, two producer roles

should be supported: a database producer and a stream producer. A database producer

publishes a collection of relations maintained in a relational database, each of which

complies with the schema of a specific stored relation. A stream producer publishes

a collection of streams, each of which complies with the schema of a specific stream

relation. The stored or streamed relations of a producer are referred to as its local

relations.

A producer advertises its local relations by describing them as views on the global

schema (Section 4.1.3) which is split into stored and stream relations.

Consumers

A consumer is defined by a relational query. If the query is posed over stream relations,

then the consumer has to declare whether it is to be interpreted as a:

Continuous query: a long-lived query that returns each tuple t that satisfies the

query condition as it is inserted,

History query: a one-off query that returns those tuples that have previously oc-

curred on a data stream which satisfy the query condition, or
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Latest-state query: a one-off query that for the most recent tuple of each of the

key values returns the tuple if it satisfies the query condition.

A query over the stored relations is interpreted as a normal database query.

Agents

The stream integration system architecture provides agents that allow clients to play

the role of an information producer or consumer without needing specific knowledge

about the system. All of the knowledge required to play one of the roles is provided

by the agent. For example, an application wishing to play the role of a consumer

would communicate through a defined interface1 with an agent. The agent would

act on behalf of the application to retrieve the required data and pass it back to the

application. It is likely that an implementation would make a set of services available

to expose the functionality of the agents.

4.1.3 Global Schema

To interact with each other, producers and consumers need a common language and

vocabulary, in which producers can describe the information they supply and con-

sumers the information for which they have a demand. For the designed system, both

the language for announcing supply and the one for specifying demand—the query

language—will be based on sql, extended as needed to cope with the streams of

data. The vocabulary consists of relations and their attributes that make up a global

schema, which is stored in the schema service. The schema service has been omitted

from Figure 4.1 for clarity of presentation, as all of the agents and the registry service

need to interact with the schema.

Ideally the global schema distinguishes between two kinds of relations, stored and

stream relations. The two sets are disjoint. It should be possible to add and remove

relations from the schema as appropriate. Also, if the system is being installed for a

particular application domain then it should contain a suitable set of core relations

that exist during the entire lifetime of the installation. For example, in the Grid

information and monitoring example the schema service would consist of the relations

1Either an API or a Web service interface.
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required to model the Glue Information Model (aka Glue Schema) for Grid resources

[110].

The attributes of a relation will have types as in sql. In addition to its declared

attributes, every stream relation has an additional attribute timestamp, which is of a

type DateTime and records the time a tuple was published.

For both kinds of relations, a subset of the attributes can be singled out as the

primary key. Primary keys are interpreted as usual: if two tuples agree on the key at-

tributes, and the timestamp in the case of a stream relation, then they must also agree

on the remaining attributes. However, since data will be published by independent

distributed producers, the constraint cannot be enforced.

For stream relations, the keys play an additional semantic role. The key attributes

specify the parameters of a reading, i.e. they identify “where” and “how” a reading

was taken. The rest of the attributes, except the timestamp, are the measurement

attributes, i.e. the attributes that state “what” the current reading is. The timestamp

attribute identifies “when” a reading was taken.

For instance, in the Grid information and monitoring example a relational version

of the Glue information model would contain the stream relation ntp for publishing

readings of the throughput of network links. The relation has the schema

ntp(from, to, tool, psize, latency, [timestamp]), (4.1)

which records the time it took (according to some particular tool) to transport packets

of a specific size from one node to another. All attributes except latency make up the

primary key of ntp. The types of the attributes in the example have been omitted as

they are not important for the understanding of the system.

Intuitively, a specific set of values for the key attributes of a stream relation identify

a channel along which measurements are communicated. For example, for the ntp

relation with the tuple

(’hw’, ’ral’, ’ping’, 256, 93, 2006-03-17 14:12:35), (4.2)

measuring a latency of 93ms for a 256 byte ping message between Heriot-Watt Univer-

sity and Rutherford Appleton Laboratory on Wednesday 17 March 2006 at 2:12 pm,

the channel is identified by the values

(’hw’, ’ral’, ’ping’, 256). (4.3)
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Consumers pose queries over the global schema. For example, consider the file

myData which contains experimental data and is replicated on several storage elements

on a Grid. A user would be interested to know how long it will take, based on the

current network traffic, to copy the file from the various storage elements where it

is replicated to a workerNode where the file will be processed, so that a suitable

copy can be chosen. Suppose also the global schema contains the ntp relation defined

in (4.1) and a stored file allocation relation

fat(site, file, size, date), (4.4)

which tracks which files are stored at which sites along with their size and date of last

modification.

Using these relations we can gather the required information with the sql-like

query

SELECT LATEST N.from, N.psize, N.latency

FROM ntp as N, fat as F

WHERE N.from = F.site AND

F.file = ’myData’ AND

N.to = ’workerNode’ AND

N.tool = ’ping’

(4.5)

which asks for the sites where the file is stored and the most up-to-date information

about the network throughput, based on the ping tool, from those sites to the cluster

that will perform the processing. The query uses the keyword “LATEST”, which

indicates that this is a latest-state query (see Section 4.1.4 for more details on temporal

query types). This information can then be used to calculate which will be the fastest

site to transfer the file from.

Similarly, producers are able to describe their local relations as views on the global

schema.

4.1.4 Producers and Consumers: Semantics

The following will discuss the semantics when producers declare their content using

views without projections. Each producer contributes a set of tuples to each global

relation. Although, selection queries are simpler than the situation considered in data
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integration for databases, see Section 2.1, already many important issues arise in the

stream setting for this case requiring a theoretical framework to be developed so that

query plans for generating answer streams can be computed, see Chapter 5. This case

also matches the current requirements of users of the Grid information and monitoring

system that has motivated this work.

An intuitive semantics for an instance of the stream integration system would be:

a stored relation is interpreted as the union of the contributions published by the

database producers; a stream relation is interpreted as a global stream obtained by

merging the streams of all the stream producers.

A stored query is interpreted over the collection of all stored relations, while a

continuous query is conceptually posed over the virtual global stream. A history

query refers to all tuples that have ever been published in the stream or some period

defined in the query. Finally, a latest-state query posed at time τ0 refers to the set of

tuples obtained by choosing from each active channel the most recent tuple published

before or at time τ0.

Actually, the semantics of stream relations is not as well-defined as it may seem

because it does not specify an order for the tuples in the global stream. Since the

sources of stream data will be distributed, there can be no guarantee of a specific order

on the entire global stream. However, the stream integration system does require that

the global streams are weakly ordered, i.e. for a given channel the order of tuples in

the global stream is consistent with the timestamps. This property ensures that

aggregation queries on streams that group tuples according to channels have a well-

defined semantics. Chapter 5 will explain how one can enforce weak order on an

instance of the global stream.

The suggested semantics of stream relations causes difficulties for some kinds of

queries, for instance, aggregate queries over sliding windows where the set of grouping

attributes is a strict subset of the keys. In such a case, different orderings of a stream

can give rise to different query answers. This issue has not been considered yet.

Among the three temporal interpretations of stream queries, only continuous

queries will be supported by default by a stream producer agent. However, when

creating a stream producer, it should be possible to instruct the agent to maintain a

pool with the history and/or the latest-state of the stream. This would enable it to
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answer queries of the respective type. The creation of these pools is optional because

their maintenance will impact on the performance of the stream producer agent.

4.1.5 Republishers

A key component of the proposed architecture for a stream integration system is

the republisher. The idea behind the republisher is that it resembles a materialised

view in a database system, which also corresponds to the intermediary in the Grid

Monitoring Architecture (gma) [92]. Their main usage is to reduce the cost of certain

query types, e.g. continuous queries over streams, or to set up an infrastructure that

enables queries of that type in the first place, e.g. latest-state or history queries.

A republisher combines the characteristics of a consumer and a producer. It is

defined by one or more queries over the global schema and publishes the answers to

those queries. The republishers can be used to compute partial answers that can then

be used to answer other queries. However, the republishers introduce redundancy in

the information available, meaning that there can be several possibilities to answer a

query. Chapter 5 describes how this is taken into account in the construction of query

execution plans for the type of consumer queries considered in this thesis.

Similar to a stream producer agent, a republisher agent which is posing a contin-

uous or mixed query can be configured to additionally maintain a pool of latest-state

values or a history. This allows the republisher to also answer the corresponding query

type.

Since both input and output to a republisher that is posing a continuous or mixed

query are streams, hierarchies of republishers over several levels can be built. An

important usage for such hierarchies is to bundle small flows of data into larger ones

and thus reduce communication cost.

Stream producers often publish data obtained from sensors, such as the throughput

of a network link measured with a specific tool. While such primary flows of data,

to elaborate on the metaphor, tend to be trickles, with republishers these can be

combined into streams proper. For instance, in the Grid scenario considered, there

may be a republisher at each of the sites that is used to collect data about the network

traffic from that site. Then, at the next level up, there could be republishers collecting

all the information between the sites belonging to an entire organisation participating
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in a Grid.

Thus a consumer asking for network throughput on all links from a particular

site need only contact the republisher for that site, or for the organisation, instead

of all the individual stream producers. The mechanisms developed to support such

hierarchies are presented in Chapter 6.

The theory developed so far requires that the queries have to be continuous and

that these can be used to set up archives of historic or latest-state data. However,

in general republishers should be able to support combinations of continuous and

stored query types in order to materialise partial answers that can be exploited when

answering consumer queries.

4.1.6 The Registry

Producers and republishers are collectively referred to as publishers. Consumer agents

need to find publishers that can contribute to answering their query. This is facilitated

by the registry, which records all publishers and consumers that exist at any given

point in time.

When a new publisher is created, its agent contacts the registry to inform it about

the type of that publisher and, if appropriate for its query type, whether it maintains

latest-state or history pools. If the publisher is a producer, the agent registers its local

relations together with the views on the global schema that describe their content.

If it is a republisher, the agent registers its queries. Similarly, when a consumer is

created, the consumer’s agent contacts the registry with the consumer’s query.

The registry co-operates with the consumer agent in constructing a query plan.

It identifies publishers that can contribute to the answers of that query, called the

relevant publishers.

When considering a continuous or mixed query, and there are republishers present,

it is not straightforward to identify which combination of publishers should be used

to answer the query. This is because republishers introduce some redundancy among

the relevant publishers as they publish the same data as the producers.

In a Grid information and monitoring system, it is important that duplicate data

is not returned in answer to a query. Additionally, since republishers themselves pose

a continuous query, there is the possibility that the hierarchy of republishers contains
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a loop. Full details of the problems of republishers being used in a continuous query

and how these may be overcome are discussed in Chapter 6.

When a consumer registers a continuous query, the registry and the consumer

agent ensure that during the entire lifetime of the consumer it can receive all the data

the query asks for. This requires that when a new producer registers, the registry

should have some mechanism to identify those consumers to which this producer is

relevant and should notify their agents. The agents will then need a mechanism to

integrate the new producer into their query plan.

Details of an approach involving republishers are discussed in Chapter 6. Con-

sumer agents also need to be informed when a republisher goes offline because then

the consumer may miss data that it has received via that republisher. Similarly, the

registry has to contact a consumer agent if a new relevant republisher is created and

when a producer goes offline.

4.2 R-GMA: A Partial Implementation

The Relational Grid Monitoring Architecture2 (r-gma) [89, 108, 109, 111] partially

implements the stream integration system detailed above. r-gma was initially de-

veloped as part of the EU DataGrid project [80] and continues to be developed in

the EU EGEE project [81]. The aim behind r-gma is to provide a unified informa-

tion and monitoring system for the Grid which meets the requirements identified in

Section 3.2. r-gma is deployed in several Grid projects including the Large Hadron

Collider Computational Grid.

4.2.1 The R-GMA Architecture

r-gma follows the local as view approach to stream integration and presents a virtual

global stream through which the data flows. It does not explicitly support stored

relations. An installation of r-gma comes with the relations of the Glue schema

[110]. However, it is possible to add and remove other relations as required.

Together with a Registry Service and a Schema Service, the r-gma system consists

of instances of four main components. These components are supported in their roles

2http://www.r-gma.org/ (February 2007)
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by services which correspond to the agents in the stream integration system. The

types of components are:

Primary Producer: Allows a stream of monitoring information to be published

according to a selection query over the global schema. The primary producer

service can be configured to store the history or latest-state information about

the stream that it publishes. The primary producer corresponds to the stream

producer in the stream integration system presented above but with no support

for publishing stored relations.

Secondary Producer: Poses one or more continuous queries over the global schema

and is used to maintain the histories or the latest-state of the streams. The

secondary producers cannot be used to answer continuous queries.

On-Demand Producer: Allows data to be published that cannot be streamed into

the system. In r-gma, the on-demand producer can be used to answer static

queries that resemble sql queries to a database. The on-demand producer

application must provide query answering capabilities to retrieve the required

information which the supporting service can then provide to the consumer as an

answer. There is no support to link the data in a specific on-demand producer

with the data in any other producer. There is no corresponding component

in the stream integration system although there are some similarities to the

database producer.

Consumer: Allows a user or application to pose either a continuous, history, latest-

state, or static query over the global schema. Since there is no support for

publishing stored relations, there is no need to support queries over such re-

lations. The consumer corresponds exactly with the consumer in the stream

integration system above.

The static data published by an on-demand producer is subtly different from the

data that would be published by the database producer in the stream integration

system presented above. For instance, in the stream integration system it would be

possible to relate data in a stream relation with data in a stored relation. This is not

possible with the static relations, it is not even possible to relate data in two different
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static relations unless they are published by the same on-demand producer. The on-

demand producer is included in r-gma as a mechanism to publish any additional

information into the system. It is the responsibility of the user to compute any

relationships between the data published by an on-demand producer and any other

producer, and to decide upon the semantics of such answers. The on-demand producer

is a first step to providing the functionality of the database producer.

At present, to overcome the absence of being able to publish stored data and relate

it to the streaming data such stored data is periodically published into the system

as a stream. For example, consider the CECluster relation for publishing details of a

cluster of computing elements

CECluster(clusterId, name, URL), (4.6)

where clusterId is a unique identifier for a cluster of computing elements, name is

the common name for the cluster (which might not be unique), and URL gives the

location of the access point for the cluster. While this method of publishing the

data periodically does generate excess network traffic, this has not been a problem

in current deployments. To develop mechanisms to process stored relations together

with stream relations requires additional research that is beyond the scope of this

thesis.

4.2.2 Query Answering in R-GMA

The description of the query answering mechanisms in r-gma can be broken down

into two parts. The first is how r-gma answers a continuous query and the second how

it answers a one-off query. (A static query is passed to the on-demand producer that

publishes the relation.) The mechanisms will be discussed in the following sections.

Answering a Continuous Query

In r-gma, a continuous query posed by a consumer consists of a select-project query

over a single relation while a continuous query posed by a secondary producer is

limited to a selection query over a single relation. Continuous queries can only be

answered by primary producers. Since the streams published by the primary produc-

ers are disjoint, there is no redundancy in the data. Thus, the query plan used to
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answer a continuous query consists of contacting all primary producers which have

a view condition that does not contradict the condition in the global query. Each

primary producer then streams those tuples that satisfy the query condition directly

to the consumer or secondary producer posing the query. Details of how such plans

are computed are discussed in Section 7.2.

While this approach to answering continuous queries has proved to be adequate for

current deployments of r-gma, there have been indications that this will not remain

the case. This approach requires that a consumer contacts every primary producer

that publishes for the named global relation and does not have a view condition that

contradicts the query condition. Thus, it must maintain several connections. How-

ever, there is a physical limit to the number of connections that each component can

maintain. Also, there is a performance cost to maintaining each of these connections.

An approach to continuous query answering that exploits the ability of the secondary

producers to merge several streams and make the resulting stream available would

alleviate this problem. The theory required for such an approach is the subject of

this thesis.

Answering a One-Off Query

In r-gma, the secondary producers provide a mechanism by which one-off queries

can be answered. The queries are arbitrary sql queries, i.e. they can include joins,

negation, aggregation, etc. A secondary producer is normally created to collect all

of the data appearing on several streams and to maintain either the history of these

streams or the latest-state values.

When a one-off query is posed, the registry service identifies those primary and sec-

ondary producers which publish all of the relations involved in the query and maintain

the appropriate type of data, i.e. either the history of the desired length or latest-

state values. It would require complex reasoning to identify only those producers that

publish all the relevant data for a query. The consumer posing the query is then given

a choice of those secondary producers which publish the entirety of all the relations

involved in the query. Where such a secondary producer does not exist, the consumer

can choose to contact one of the primary producers but there is no guarantee that it

will get the complete answer in this case. Full details of the one-off query answering
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mechanism are provided in [108]

4.3 Comparison to Requirements and Existing Sys-

tems

This section considers whether the designed stream integration system meets the

requirements of a Grid information and monitoring system that were identified in

Section 3.2. It will also compare the partial implementation, r-gma, with existing

Grid information and monitoring systems.

4.3.1 Meeting the Requirements

The first requirement identified was the ability to publish both stored and streaming

data by advertising the content and being able to answer requests for the data. The

proposed stream integration system is designed to allow for the publication of both

types of data and, by declaring a view on the global schema, it advertises the con-

tent. The producer agents are designed to provide the query answering capabilities.

However, the r-gma implementation of the design only allows for the publication of

streaming data at present.

The second requirement was that it should be possible to locate and query data.

This requirement is met by the use of a global schema and the fact that consumers

pose queries over the schema. The r-gma implementation provides rudimentary

mechanisms to translate continuous and one-off global queries into queries over the

available data sources. The rest of this thesis will consider how continuous selection

queries can be answered more efficiently by using republishers.

The third requirement states that the system should be scalable, robust, and

perform well under the loads anticipated on a large Grid. By separating out the

tasks of locating and retrieving data, the stream integration system will be scalable.

Scalability and performance will also be achieved by allowing the partial answers

generated by republishers to be used in answering any continuous query. The theory

to allow this for selection queries is developed in the subsequent chapters of this

thesis. The robustness of the system is increased by replicating the registry and
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schema services. This has not yet been achieved in the r-gma implementation. The

robustness will also come from updating query plans to reflect changes to the set of

publishers in the system. The theory for this will be presented in Chapter 6.

The final requirement was that of security. This is not addressed by the design.

r-gma has a security framework built-in to the implementation. The result is that

only producers which a consumer is allowed to access are used to answer a query.

Any implementation of the stream integration system would need to consider the

security requirements of their application and the effects of these on the query planning

process.

4.3.2 Comparison to Other Grid Information and Monitoring

Systems

The following considers how r-gma compares with the existing Grid information and

monitoring systems of Section 3.3.3.

r-gma is a generic unified Grid information and monitoring system. This distin-

guishes it from Grid monitoring systems such as autopilot [97], grrads [98], or the

network weather service [100, 9] which have been designed for only specific informa-

tion.

r-gma uses the relational data model which means that the schema does not

need to be designed with all possible queries in mind. This allows it to answer more

complex queries than scalea-g [101] or mds [103, 104].

4.4 Summary

This chapter has proposed an architecture for a stream integration system along with

details of the r-gma system, a partial implementation. The stream integration system

presents a virtual dataspace via a global schema. The design discussed mechanisms for

publishing and query the data in the virtual dataspace. A key feature of the architec-

ture is the republisher. Not only does the republisher allow history and latest-state

queries to be answered, it also provides an infrastructure for answering continuous

queries more efficiently. The theory required to exploit the republishers for answering
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continuous selection queries will be presented in the next two chapters.
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Answering Continuous Queries

Using Views

This chapter considers the problem of answering a continuous query over the global

schema using the data published by the available publishers, i.e. it considers how

to integrate streams of data and generate a query plan that efficiently answers a

global query from the available data sources. A solution is proposed that is based on

answering queries using views over data streams. This is needed to allow a stream

integration system, such as that proposed in Chapter 4, to answer queries and to

provide guarantees about the answer streams generated. The components of the

stream integration system will be referred to throughout this chapter. The theory

developed is for selection queries which provides many challenges, and matches the

requirements of the motivating Grid information and monitoring system problem. The

theory presented is general and can be applied whenever there is a need to integrate

distributed streams of data and has been published in [109].

The chapter begins by presenting a formalisation of the problem in Section 5.1. It

presents a theoretical data model for a data stream and defines when a data stream

conforms to a schema as well as providing basic operations and properties for a stream.

It then defines how a stream is published by a producer and how it can be queried

with a continuous selection query.

Section 5.2 introduces a formalisation of republishers. Since republishers introduce

redundancy in the data, a query plan must decide from where to retrieve each part

of the answer stream. Thus, desirable properties for a query plan are identified and
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formalised.

Finally, Section 5.3 presents a mechanism for generating query plans for a contin-

uous global selection query that exploits the redundancy introduced in the data by

the republishers. It will be shown that the plans generated guarantee the desirable

properties for a query plan. The same theory and mechanism can be used to answer

continuous select-project queries.

5.1 A Formal Framework for Publishing and Query-

ing Data Streams

5.1.1 A Global Schema

In order for the components of the framework to be able to communicate, it is assumed

that there is a global schema against which queries are posed, as stated in Section 4.1.3.

A relation r in the global schema consists of attributes with defined types. The

attributes of r are split into three parts: key attributes, measurement attributes, and

a timestamp attribute.

As an example, taken from a Grid information and monitoring application, con-

sider the relation ntp (“network throughput”) as introduced earlier (4.1) with the

schema

ntp(from, to, tool, psize, latency, [timestamp]), (5.1)

which records the time it took, according to some particular tool, to transport packets

of a specific size from one node to another. Again, the types are omitted for clarity

of presentation. The underlined attributes make up the primary key of ntp, while

latency is the measurement attribute, and timestamp records the time at which the

reading was made.

5.1.2 Streams and Their Properties

Data streams are modelled as finite or infinite sequences of tuples where one attribute

of each tuple is a timestamp. This captures the idea that a stream consists of readings,

each of which is taken at a specific point in time.
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A stream s satisfies the schema of a relation r if all its tuples satisfy the description

of r. It is assumed that a relation schema is declared for every stream and that the

stream satisfies its local schema.

More precisely, suppose that T is the set of all tuples that can be derived for the

relation r. Then a stream s that conforms to the relation r is a partial function from

the natural numbers N to T ,

s : N ↪→ T, (5.2)

such that, for some m, n ∈ N, if s(n) is defined then the tuple s(m) is defined for all

m < n. Thus, s(n) denotes the nth tuple of s. The notation s(n) = ⊥ is used if the

nth tuple of s is undefined. A special case is the empty stream, also denoted as ⊥,

which is undefined for every n ∈ N.

This choice of model for data streams allows different tuples to have the same

timestamp, e.g. if the stream is created by merging several other streams, and tuples

to arrive in an order independent of their timestamp. Thus, there are no require-

ments about how regularly a reading can be taken nor is it required that readings are

published in chronological order.

Properties of Data Streams

As stated in Section 5.1.1 the attributes of a stream relation are split into three parts:

key attributes, measurement attributes and the timestamp. The following shorthand

notations will be used for the subtuples of s(n) relating to these three parts:

sκ(n) for the values of the key attributes;

sµ(n) for the values of the measurement attributes;

sτ (n) for the timestamp of s(n).

This notation is used to formalise the channels of a stream which were informally

introduced in Section 4.1.3. A stream s1 is a substream of s2 if s1 can be obtained from

s2 by deleting zero or more tuples from s2. A channel of s is a maximal substream

whose tuples agree on the key attributes of s, i.e. for any s(n) and s(m) that occur

on the same channel then sκ(n) = sκ(m).

The following properties of streams are central to the semantics of stream queries

considered here.
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Duplicate Freeness: A stream s is duplicate free if for all m, n with m 6= n it is the

case that s(m) 6= s(n), that is, if no tuple occurs twice in s.

Weak Order: A stream s is weakly ordered if for all m, n with sκ(m) = sκ(n) and

m < n it is the case that sτ (m) < sτ (n). This means that in every channel

of s, tuples appear in the order of their timestamps. Note that this definition is

equivalent to requiring that for all m, n with sκ(m) = sκ(n) and sτ (m) < sτ (n)

it is the case that m < n.

Disjointness: Two streams s1 and s2 are disjoint if for all m, n we have that s1(m) 6=

s2(n), that is, if s1 and s2 have no tuples in common.

Channel Disjointness: Two streams s1 and s2 are channel disjoint if for all m, n it

is the case that sκ
1(m) 6= sκ

2(n), that is, if s1 and s2 have no channels in common.

Clearly, channel disjointness implies disjointness.

Operations on Streams

The following contains two simple definitions for operations on streams. Let s be a

stream and suppose that C is a condition involving attributes of the schema of s,

constants, operators “=”, “6=”, “<”, “≤”, “>”, “≥”, and boolean connectives. Then

the selection σC(s) of s is the substream of s that consists of the tuples in s that

satisfy C where those tuples appear in the same order as they do in s.

Let s1, . . . , sn be streams for relations with union compatible schemas. A stream

s is a union of s1, . . . , sn if s can be obtained by merging these streams, i.e. if each

si contributes all its tuples to s, and the tuples of si occur in s in the same order as

they do in si.

The result of a selection is unique while this is not the case for a union. This is

because the union operation does not uniquely define the order when merging two

streams. Also note that

1. The stream resulting from a selection operation is weakly ordered if its argument

stream is,

2. The streams that can result from the union operation are weakly ordered if the

argument streams are channel disjoint and weakly ordered, and
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3. The result of a union is duplicate free if the argument streams are mutually

disjoint and duplicate free.

5.1.3 Producing a Data Stream

A stream producer is a component that is capable of producing a data stream. Every

stream producer has a local relation schema. Both the stream producer and the name

of the relation in the local schema for that producer are denoted by the letter S.

Local Queries over Stream Producers

Queries posed over the stream producers are called local queries as opposed to global

queries, which are posed over a global schema and shall be discussed in Section 5.1.4.

The local queries considered are unions of selections of the form

Q = σC1(S1) ] . . . ] σCm(Sm), (5.3)

where S1, . . . , Sm are distinct stream producers whose schemas are union compatible.

A special case is the empty union, which results in the empty stream ε.

To define the semantics of such a query, a stream is associated with each producer.

A stream assignment over a set of producers is a mapping I that associates with each

producer S a stream SI that is compatible with the schema of S. A stream s is an

answer for Q w.r.t. I if s is a multi-set union of the selections σC1(S
I
1 ), . . . , σCm(SI

m).

It should be noted that an answer is not uniquely defined since there is more than

one way to merge the selections σCi
(SI

i ). The empty union ε has only one answer,

namely the empty stream ⊥.

The multi-set, or bag, union is used as duplicate elimination would be a costly

operation and not realistic as it would result in a performance burden. In the worst

case, where the stream is infinite, it would require an infinite amount of storage to

ensure that all duplicates were eliminated. Although the difference between multi-set

union and set union does not make a difference when only producers are considered,

there will be a difference when republishers are considered.
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Producer Configurations

Consider the collections of stream producers as they would be created in an implemen-

tation of the stream integration system. It is assumed that there is a global schema G,

which is a collection of stream relations. A producer configuration consists of a finite

set S of stream producers and a mapping v that associates with each producer S ∈ S

a query vS over the global schema G such that vS is compatible with the schema of S.

If no confusion can arise, the producer configuration is also denoted with the letter

S. In the stream integration system, producer configurations are represented in the

schema and the registry.

The query vS is called the descriptive view of the producer S. Descriptive views

are limited to selections, i.e. they have the form σD(r) where D is a condition and r

is a global relation. Although only the simple case of selection queries are considered

here, this already presents significant challenges. Moreover, developing the framework

for selection queries meets the requirements currently identified for a Grid information

and monitoring system which was the motivating application for this work.

To ease the presentation, it is required that if S is described by the view σD(r) that

S and r have the same attributes with the same types and the same key constraints. It

is also required that the condition D in σD(r) involves only key attributes of r. Thus,

the view of a producer restricts the channels, but not the possible measurements of

the readings.

Instances of Producer Configurations

A producer configuration is similar to a database schema. It contains declarations and

constraints, but no data. The following shall define which streams are the possible

instances of such a configuration.

A stream s is sound with respect to a query σD(r) over the global schema if the

schema of s is compatible with the schema of r and if every tuple s(n) satisfies the

view condition D.

An assignment I for the producers in a configuration S is an instance of S if for

every S ∈ S the following all hold for the stream SI :

1. Sound with respect to the descriptive view v(S).
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2. Duplicate free.

3. Weakly ordered.

4. Channel disjoint from the streams of the other producers.

5.1.4 Global Queries and Query Plans

Consumer components in r-gma pose queries over the global schema and receive a

stream of answers. The only queries over the global schema considered in this thesis

are selections of the form

q = σC(r), (5.4)

where r is a global relation. Since the relation r does not refer to an existing stream

it is not straightforward what the answer to such a query should be.

Intuitively, the query q is posed against a virtual stream, made up of all the

individual streams contributed by the producers. A producer S produces for the

relation r if S is described by a view over r. If I is a producer instance then an

answer for q w.r.t. I is a duplicate free and weakly ordered stream that consists of

those tuples satisfying C that occur in streams SI of producers S that produce for

r. Note that according to the definition there can be infinitely many different answer

streams for a query q. Any two answer streams consist of the same tuples but differ

in the order in which they appear.

Note also that tuples do not need to occur in the same order as in the original

producer streams. It is only required that the tuples of a channel appear in the same

order as in the stream of the publishing stream producer. This makes it possible for

streams to be split and then re-merged during processing.

Since global queries cannot be answered directly, they need to be translated into

local queries. A local query Q is a plan for a global query q if for every producer

instance I it is the case that all answer streams for Q w.r.t. I are also answer streams

for q w.r.t. I. Proposition 5.1 gives a characterisation of plans that use only stream

producers.

Proposition 5.1 (Plans Using Producers) Let Q = σC1(S1)] . . .]σCm(Sm) be a

local query where each Si is described by a view σDi
(r) and let q = σC(r) be a global
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query. Then Q is a plan for q if and only if the following both hold.

1. For each i ∈ 1..m it must be the case that

Ci ∧ Di |= C and C ∧ Di |= Ci. (5.5)

2. Every stream producer S with a descriptive view σD(r) such that C ∧ D is

satisfiable occurs as some Si.

Proof. The first condition ensures that any producer occurring in Q contributes

only tuples satisfying the query and that it contributes all such tuples that it can

possibly produce. The second condition ensures that any producer that can possibly

contribute occurs in the plan.

Since by assumption all Si are distinct and the streams of distinct producers are

channel disjoint, all answers of Q are duplicate free. Also, by the definition of union

of streams, all answers are weakly ordered.

5.2 Query Plans Using Republishers

This section formally introduces republishers and generalises query plans accordingly.

Characteristic criteria are developed that can be used to check whether a local query

over arbitrary publishers is a plan for a global query.

5.2.1 Republishers and Queries over Republishers

A republisher R is a component that is defined by a global query qR = σD(r). For a

given instance I of a producer configuration the republisher outputs a stream that is

an answer to qR w.r.t. I. The descriptive view v(R) of a republisher is identical to

the defining query qR. A republisher configuration R is a set of republishers.

Publisher Configurations

Since both producers and republishers publish streams, they are collectively referred

to as publishers. Ultimately, the aim is to answer global queries using arbitrary

publishers.
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A publisher configuration is defined as a pair P = (S,R) consisting of a producer

and a republisher configuration. By abuse of notation, the set S∪R shall be identified

as P .

A stream assignment J for publishers in P is an instance of P if

1. The restriction J|S of J to S is an instance of S, and if

2. For every republisher R the stream RJ is an answer for the global query qR

w.r.t. J|S .

Thus, an instance J is “essentially” determined by J|S . Note that RJ being an

answer for a global query implies that RJ is duplicate free and weakly ordered.

Local Queries over Publishers

In the presence of republishers the concept of a local query, which had the form (5.3),

is generalised in such a way as to allow them to be posed over arbitrary publishers.

Thus, general local queries have the form

Q = σC1(P1) ] . . . ] σCm(Pm), (5.6)

where P1, . . . , Pm are distinct publishers.

A stream s is an answer for Q w.r.t. J if s is a union of the selections

σC1(P
J
1 ), . . . , σCm(PJ

m ). (5.7)

Similarly as before, a local query Q as in (5.6) is a plan for a global query q if for all

instances J , every answer for Q is an answer for q.

Republishers add to the difficulty of characterising when a local query over a publisher

configuration is a plan for a global query because they introduce redundancy. As a

consequence, answers to such a query need not be duplicate free or weakly ordered.

5.2.2 Properties of Query Plans

The characteristic properties of plans are identified here. They are defined in terms

of the properties of the answers to a query.
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Consider a fixed publisher configuration P and let Q be a query over P as in (5.6).

Then Q is duplicate free if for all instances J of P all answer streams for Q w.r.t. J

are duplicate free. In a similar way, query Q is defined to be weakly ordered. Let q be

a global query. Then Q is sound for q if for all instances J of P all answer streams for

Q w.r.t. J are sound for q. A stream s is complete for q with respect to a producer

instance I if every tuple in an answer stream for q w.r.t. I occurs also in s. Query Q

is complete for q if for all instances J all answer streams for Q w.r.t. J are complete

for q w.r.t. J|S .

Clearly Q is a plan for q if and only if the following all hold for Q:

1. Sound for q.

2. Complete for q.

3. Duplicate free.

4. Weakly ordered.

For soundness and completeness it would be expected that there are characterisations

similar to those in Proposition 5.1. However, with republishers there is the difficulty

that the descriptive views do not accurately describe which data a republisher offers

in a given configuration. For instance, a republisher may always publish the empty

stream if the configuration does not contain any producers whose views are compatible

with the republisher’s query.

Given a publisher configuration P , for every republisher R defined by the query

σD(r), a new condition D′ is derived as follows. Let S1, . . . , Sn be all producers for r

in P , where v(Si) = σEi
(r). Then

D′ = D ∧
( n∨

i=1

Ei

)
. (5.8)

Intuitively, D′ describes which of the tuples that can actually be produced in P will

be republished by R. The view v′(R) := σD′(r) is called the relativisation of the view

v(R) w.r.t. P . For a producer S the relativisation v′(S) is defined to be equal to v(S).

Note that an empty disjunction is equivalent to false and therefore the relativised

condition for a republisher that does not have producers is false.
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5.2.3 Soundness

A characterisation of soundness is given in Theorem 5.2.

Theorem 5.2 (Soundness of a query plan) Let P be a publisher configuration,

q = σC(r) a global query, and Q = σC1(P1) ] · · · ] σCm(Pm) be a local query over P.

Suppose that the descriptive view of Pi is v(Pi) = σDi
(r) and that the relativisation is

v′(Pi) = σD′
i
(r). Then Q is sound for q if and only if for each i ∈ 1..m it is the case

that

Ci ∧ D′
i |= C. (5.9)

Proof. Clearly, if (5.9) holds, then every tuple in an answer to σCi
(r) over P satisfies

C, and so does every tuple in an answer to Q over P .

Conversely, if (5.9) does not hold, then there is a tuple t that satisfies some Ci

and D′
i, but not C. Since the argument is simpler if Pi is a producer, it is assumed

without loss of generality that Pi is a republisher.

Since t satisfies D′
i, there is a producer S with v(S) = σE(r) such that t satisfies

Di and E. Let J be an instance where the stream SJ contains t. Then the stream

PJ
i contains t as well, because PJ

i is an answer for σDi
(r). Then t is in every answer

stream for σCi
(Pi) and therefore in every answer stream for Q w.r.t. J . However, t

does not occur in any answer stream for Q because t does not satisfy C.

It is easy to see that the criterion of Theorem 5.2 can be weakened to a sufficient

one if instead of (5.9) it is required that for each i ∈ 1..m it is the case that

Ci ∧ Di |= C, (5.10)

where Di is the original condition in the descriptive view of Pi.

5.2.4 Completeness

To characterise completeness, it must be possible to distinguish between the producers

and the republishers in a local query. The reason is that the stream of a republisher is

always complete for its descriptive view while this need not be the case for a producer.

Let Q be a local query as in (5.6) and suppose that R1, . . . , Rk are the republishers

and S1, . . . , Sl the stream producers among P1, . . . , Pm. Then the query can be written
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as Q = QR ]QS where

QR = σC1(R1) ] · · · ] σCk
(Rk) (5.11)

QS = σC′
1
(S1) ] · · · ] σC′

l
(Sl). (5.12)

Suppose that the republishers have the descriptive views v(Ri) = σDi
(r). Then a

condition CR
Q , which summarises the conditions in the selections of the republisher

part QR of Q, is defined as follows:

CR
Q =

k∨
j=1

(Cj ∧ Dj). (5.13)

A characterisation for completeness is now given in Theorem 5.3.

Theorem 5.3 (Completeness of a query plan) Let P be a publisher configura-

tion, q = σC(r) a global query, and Q = QR ] QS a local query where QR and QS

are as in (5.11) and (5.12). Then Q is complete for q if and only if for every stream

producer S ∈ P, where S is described by the view σE(r), one of the two following

statements hold.

1. S = Si for some producer Si in QS and

C ∧ E |= CR
Q ∨ C ′

i; (5.14)

2. S does not occur in QS and

C ∧ E |= CR
Q . (5.15)

Proof. (Sketch) To see that the criterion is sufficient note that any tuple in an answer

for q must satisfy C and must originate from some producer for r with view condition

E. Let S be such a producer. A tuple returned by Q can occur either as an element

of an answer for QR or as an element of an answer for QS. If S is present in Q,

then (5.14) guarantees that a tuple produced by S is either returned by QR or by

QS. If S is not present in Q, then (5.15) guarantees that a tuple produced by S is

returned by QR.

To see that the criterion is necessary, assume that there is producer S for which

neither of the two statements holds. Suppose that S occurs in QS. Then there is a
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tuple t such that t satisfies C ∧ E, but satisfies neither CR
Q nor C ′

i. That is, there

exists an instance J of P such that t occurs in the stream SJ . Every answer for q

w.r.t. J contains t. However, t does not occur in any answer for Q w.r.t. J . With a

similar argument one can show that t does not occur in any answer for Q if S does

not occur in QS. In summary, this proves that Q is not complete for q.

5.2.5 Duplicate Freeness

A characterisation of duplicate freeness is provided in Theorem 5.4.

Theorem 5.4 (Duplicate Freeness of a query plan) Suppose P is a publisher

configuration and Q a local union query over publishers P1, . . . , Pm as in (5.6). Sup-

pose that the relativised descriptive view of each Pi is v′(Pi) = σD′
i
(r). Then Q is

duplicate free if and only if the condition

(Ci ∧ D′
i) ∧ (Cj ∧ D′

j) (5.16)

is unsatisfiable for each republisher Pi and publisher Pj where i 6= j.

Proof. If the statement is true, then for any instance J , the streams σCi
(PJ

i ) are

mutually disjoint and every answer of Q is duplicate free because the streams σCi
(PJ

i )

are duplicate free.

If the statement is not true, then there are i and j with i 6= j and a tuple t such

that t satisfies both Ci ∧ D′
i and Cj ∧ D′

j. Suppose that Pi is a republisher and

Pj is a producer. Consider an instance J where t occurs in the stream PJ
j of the

producer Pj. Since Pi is a republisher, t occurs also in the stream PJ
i . Finally, since

t satisfies both Ci and Cj, the tuple occurs in both streams, σCi
(PJ

i ) and σCj
(PJ

j ).

Hence, there is an answer to Q where the tuple t occurs twice.

If both Pi and Pj are republishers, it can shown that there is a producer S with

view σE(r) such that Di ∧ Dj ∧ E is satisfiable. Then choose a satisfying tuple t and

consider an instance J where SJ contains t. The rest of the argument is analogous

to the first case.

Similar to Theorem 5.2, the criterion of the above theorem can be turned into a

sufficient one by replacing the relativised conditions D′
i in (5.16) by the view conditions
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Di, that is, if

(Ci ∧ Di) ∧ (Cj ∧ Dj) (5.17)

is unsatisfiable for each republisher Pi and publisher Pj where i 6= j.

5.2.6 Weak Order

The following lemma gives a semantic characterisation of weakly ordered queries.

Lemma 5.5 Let P be a publisher configuration and Q = σC1(P1) ] · · · ] σCm(Pm) be

a local query. Then Q is weakly ordered if and only if for all publishers Pi, Pj with

i 6= j occurring in Q and for every instance J of P the following holds:

If t and t′ are tuples occurring in the two streams σCi
(PJ

i ) and σCj
(PJ

j ), respec-

tively, then t and t′ disagree on their key attributes.

The lemma holds because otherwise the two streams in question could be merged

in such a way that t and t′ occur in an order that disagrees with their timestamps.

The lemma excludes, for instance, the possibility to use two republishers R>10 and

R≤10 with views σlatency>10(ntp) and σlatency≤10(ntp), respectively, for answering the

query σtrue(ntp). The reason is that, latency being a measurement attribute, some

tuples of a given channel could end up being republished by R>10 and others by R≤10.

Since in the end the goal is to characterise plans for global queries, the following

considers when a local query is weakly ordered and complete for some global query

q. Considering these two properties together has the advantage that it leads to a

characterisation in terms of the individual disjuncts that make up a union query.

Lemma 5.6 (One Publisher per Channel) Let P be a publisher configuration and

Q = σC1(P1) ] · · · ] σCm(Pm) be a local query. Suppose that Q is complete for the

global query σC(r). Then Q is weakly ordered if and only if for every publisher Pi

occurring in Q and every instance J of P the following holds:

If the stream σCi
(PJ

i ) contains some tuple t that satisfies C, then this stream

contains every tuple t′ that is generated by a producer for r such that t′ satisfies C

and t′ agrees with t on the key attributes.
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This lemma follows immediately from the preceding one: if it is impossible for two

publishers to publish tuples from the same channel, then all tuples of one channel

must come from the same publisher.

Lemma 5.6 can be formalised in logic. The condition C of query q is written as

C(x, y), where x stands for the vector of key attributes of r, which identifies a channel,

and y for the non-key attributes. Similarly, the conditions Ci in query Q and D′
i in the

relativised descriptive views are written as Ci(x, y) and D′
i(x, y) and the conjunction

Ci(x, y) ∧ D′
i(x, y) is abbreviated as Fi(x, y).

Theorem 5.7 (Weak Order) Let P be a publisher configuration, Q a local query

over P, where QR = σC1(R1) ] · · · ] σCk
(Rk), and q = σC(r) a global query. Suppose

that Q is complete for q w.r.t. P. Then Q is weakly ordered if and only if for all

i ∈ 1..k it is the case that

∃y. (C(x, y) ∧ Fi(x, y)) |= ∀y. (C(x, y) → Fi(x, y)). (5.18)

Proof. Suppose that (5.18) holds for all i ∈ 1..k. Consider an instance J of P . Then

the claim can be shown using Lemma 5.6.

Suppose that t = (tx, ty) is a tuple in the stream σCi
(RJ

i ) obtained from a repub-

lisher Ri. Then tx satisfies ∃y. (C(x, y) ∧ Fi(x, y)). By (5.18), it follows that tx also

satisfies ∀y. (C(x, y) → Fi(x, y)). Let t′ = (tx, t
′
y) be a tuple that is generated by a

producer for r and agrees with t on the key attributes. Suppose that t′ satisfies C.

Then, since tx satisfies ∀y. (C(x, y) → Fi(x, y)), it follows that t′ also satisfies Fi.

Hence, t′ occurs also in the stream σCi
(RJ

i ).

Since producer streams do not share channels, Lemma 5.6 yields the sufficiency of

the criterion.

Next the necessity is shown. Suppose that (5.18) does not hold for some i ∈ 1..k.

Then there is a tuple t = (tx, ty) that satisfies C ∧ Fi and a tuple t′ = (tx, t
′
y) such

that t′ satisfies C, but not Fi. By definition of Fi, the tuple t satisfies Ci, Di, and

some condition E for a stream producer S with descriptive view σE(r). An instance

J can be constructed where both t and t′ occur in the stream of S. Then t occurs in

every answer to σDi
(r), the defining query of Ri, and thus in RJ

i . Moreover, t occurs

in the stream σCi
(RJ

i ). However, since t′ does not satisfy Fi, it does not occur in that

stream. Hence, by Lemma 5.6 it follows that Q is not weakly ordered.
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It is noted that the proof above would go through as well if (5.18) were changed

into

∃y. (C(x, y) ∧ Ci(x, y) ∧ D′
i(x, y)) |= ∀y. (C(x, y) → Ci(x, y) ∧ Di(x, y)), (5.19)

where the relativised condition D′
i on the right hand side of the entailment in (5.18)

is replace by the original view condition Di. However, this formulation is less concise.

Consider again that part of the proof above that shows the sufficiency of the fact

that (5.18) holds for all i ∈ 1..k for the claim of Theorem 5.7. It turns out that the

proof also works for the definition

Fi(x, y) = Ci(x, y) ∧ Di(x, y), (5.20)

that is, if the relativised view is replaced by original view conditions. Thus, (5.20)

leads to a simpler albeit sufficient criterion for weak order.

The entailment in (5.18) of Theorem 5.7 is in general difficult to check because of

the universal quantifier. However, it can be simplified for queries and descriptive views

where the conditions on key and on non-key attributes are decoupled, that is, if every

condition C(x, y) can be written equivalently as Cκ(x) ∧ Cµ(y) (and analogously Ci

and Di, and therefore also Fi). This restriction is not likely to cause difficulties in

practice.

Theorem 5.8 Suppose C(x, y) ≡ Cκ(x) ∧ Cµ(y) and Fi(x, y) ≡ F κ
i (x) ∧ F µ

i (y).

Then

∃y. (C(x, y) ∧ Fi(x, y)) |= ∀y. (C(x, y) → Fi(x, y)) (5.21)

holds if and only if one of the following holds:

1. Cκ(x) ∧ F κ
i (x) is unsatisfiable.

2. Cµ(y) ∧ F µ
i (y) is unsatisfiable.

3. Cµ(y) |= F µ
i (y).

Proof. Suppose that (5.21) holds. Let t(x, y) be a tuple for which ∃y. (C(x, y) ∧

Fi(x, y)) is true then it is the case that Cκ(x) ∧ F κ
i (x) is satisfiable and Cµ(y) ∧ F µ

i (y)

is satisfiable. Thus, it is required to show that Cµ(y) |= F µ
i (y). Since (5.21) holds, for

74



Chapter 5. Answering Continuous Queries Using Views

t it is the case that ∀y. (C(x, y) → Fi(x, y)) and by decoupling the conditions that

Cµ(y) |= F µ
i (y) holds.

Now it is required to show that ∃y. (C(x, y) ∧ Fi(x, y)) |= ∀y. (C(x, y) → Fi(x, y))

holds only if one of the cases holds. Suppose that either case 1 or 2 holds, then the

entailment holds since the condition ∃y. (C(x, y) ∧ Fi(x, y)) is always false.

Suppose that Cµ(y) |= F µ
i (y) holds and that Cκ(x) ∧ F κ

i (x) is satisfiable and

Cµ(y) ∧ F µ
i (y) is satisfiable. From the fact that Cκ(x) ∧ F κ

i (x) is satisfiable and

Cµ(y) ∧ F µ
i (y) is satisfiable it follows that ∃y. (C(x, y) ∧ Fi(x, y)) is satisfiable. Thus,

it must be shown that whenever ∃y. (C(x, y) ∧ Fi(x, y)) holds that ∀y. (C(x, y) →

Fi(x, y)) holds. Since Cµ(y) |= F µ
i (y) it follows that the entailment (5.21) holds.

Again, a sufficient criterion is obtained if in the definition of the Fi the relativised

view conditions are replaced by the original ones.

The theorems in this section contain characterisations that can be used to verify

whether a local query is a plan for a global query. It has been shown that the

characterisations can be simplified to yield sufficient criteria for soundness, duplicate

freeness and weak order.

The next section discusses how the characterisations can be used to compute query

plans over a publisher configuration. In the next chapter it will be shown how these

techniques can be used to realise hierarchies of publishers where republishers consume

from other republishers.

5.3 Computing Consumer Query Plans

Based on the characterisations in the previous section, there is a straightforward

approach to constructing a plan Q for a global query q = σC(r). If S1, . . . , Sn is a

sequence comprising all stream producers in a configuration P that publish for relation

r, then by Proposition 5.1 the query

σC(S1) ] · · · ] σC(Sn) (5.22)

is a plan for q. However, this plan may access a higher number of publishers than

necessary because it does not make use of republishers. The question arises when a

publisher is potentially useful for a query.
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General Assumption. It is assumed from now on that in global queries and descrip-

tive views the conditions on key and non-key attributes are decoupled, that is, every

condition C can be equivalently rewritten as Cκ ∧ Cµ, where Cκ involves only key

attributes and Cµ involves only non-key attributes.

5.3.1 Relevant Publishers

This subsection considers which publishers can potentially contribute to a query plan.

A publisher P is strictly relevant for a query q with respect to a configuration P

if there is a plan Q for q that contains a disjunct σC′(P ) such that for some instance

J of P the stream σC′(PJ ) is non-empty.

Proposition 5.9 (Strict Relevance) Let P be a publisher configuration and P a

publisher with view σD(r), where D = Dκ ∧ Dµ, and where D′ is the relativised view

condition. Let q = σC(r) be a global query where C = Cκ ∧ Cµ. Then P is strictly

relevant for q w.r.t. P if and only if both the following hold.

1. C ∧ D′ is satisfiable.

2. Cµ |= Dµ.

Proof. If P is strictly relevant, then criterion 1 holds because P contributes some

tuple to q and criterion 2 holds by Theorem 5.7 because the plan containing P is

complete and weakly ordered.

Conversely, suppose that the two criteria hold. If P is a producer an instance can

be constructed where P produces a tuple satisfying C. Then P can be part of a plan

as in (5.22). Because of criterion 1, there is an instance where P contributes at least

one tuple to the answer of the plan.

If P is a republisher, by considering the query Q = σC(P )]σC′(S1)]· · ·]σC′(Sn),

where S1, . . . , Sn are all producers for r in P and C ′ = C ∧ ¬D. Then it is easy to

check that Q is duplicate free, and sound and complete for q. Moreover, because of

criterion 2, Q is weakly ordered. Finally, criterion 1 allows us to construct an instance

of P where P actually contributes to Q.

Criterion 1 of Proposition 5.9 involves relativised views. In practice, this is hard

to check because there may be a large number of producers in a configuration and
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producers may come and go. The criterion can be generalised in such a way that

it depends solely on the publisher and the query, Lemma 5.10. Intuitively, the first

property states that P can potentially contribute values for some channels requested

by q, while the second states that for those channels all measurements requested by q

are offered by P .

Lemma 5.10 (Relevance) A publisher P with view σD(r), where D = Dκ ∧ Dµ,

is relevant for a query σC(r) with C = Cκ ∧ Cµ if it has the following two properties.

1. C ∧ D is satisfiable (Consistency).

2. Cµ |= Dµ (Measurement Entailment).

Clearly, strict relevance implies relevance. Also, a relevant republisher may become

strictly relevant if the right producers are added to the current configuration.

5.3.2 Subsumption of Publishers

In principle, there is a wide range of possibilities to construct query plans in the

presence of republishers. It is desirable in the proposed stream integration system,

and in the context of r-gma, to give preference to republishers over producers, since

one of the main reasons for setting up republishers is to support more efficient query

answering. Among the republishers, preference is given to those that can contribute

as many channels as possible to a query. In order to be able to rank publishers a

subsumption relationship is introduced.

A stream s1 is subsumed by a stream s2 if for every channel c1 in s1 there is a

channel c2 in s2 such that c1 is a substream of c2. A publisher P is subsumed by

a republisher R with respect to a configuration P , if for every instance J of P the

stream PJ is subsumed by RJ . Since P is usually clear from the context, this is

simply denoted as P � R. Publisher P is strictly subsumed by R written as P ≺ R

if P is subsumed by R but not vice versa.

The definition entails that if P has the view σDκ ∧ Dµ(r) and R the view σEκ ∧ Eµ(r),

then P is subsumed by R if and only if

Dκ |= Eκ and Eµ |= Dµ. (5.23)
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When considering a query q = σC(r), where C = Cκ ∧ Cµ, it is desirable to

rank the relevant publishers for q according to the channels they can contribute to q.

If P is a relevant publisher for q and R a relevant republisher, then P is subsumed

by R w.r.t. q, written as P �q R, if for every instance J of P the stream σC(PJ )

is subsumed by σC(RJ ). The notation P ≺q R is used to express that P is strictly

subsumed by R w.r.t. q.

If the descriptive view of P is σDκ ∧ Dµ(r) and the one of R is σEκ ∧ Eµ(r), then

P �q R if and only if

Dκ ∧ Cκ |= Eκ. (5.24)

The property Cµ ∧ Eµ |= Cµ ∧ Dµ is always satisfied, since the relevance of R and

P implies that Cµ |= Eµ and Cµ |= Dµ.

5.3.3 Plans Using Maximal Relevant Republishers

A method for constructing query plans that consist of publishers that are maximal

relevant with regard to the subsumption relation “�q” is presented. During the con-

struction of a query plan it is assumed that the publisher configuration and the query

q = σC(r) are fixed.

A relevant publisher is maximal if it is not strictly subsumed by another relevant

publisher. Let Mq be the set of maximal relevant publishers for q. The set Mq is parti-

tioned into the subsets MS
q and MR

q , consisting of stream producers and republishers,

respectively.

If P1 �q P2 and P2 �q P1 then P1 ∼q P2. Clearly, if P1 and P2 are two distinct

maximal relevant publishers, and P1 �q P2 then P1 ∼q P2. Note that a producer is

never equivalent to another publisher because it cannot subsume the other publisher.

Thus, the relation “∼q” is an equivalence relation on the set of republishers MR
q and

R1 is equivalent to R2 w.r.t. q if R1 ∼q R2.

The equivalence class of a republisher R w.r.t. q is denoted as [R]q. Any two

equivalent republishers will contribute the same answer tuples satisfying q. Therefore,

only one element of any class [R]q needs to be chosen when constructing a plan for q.

The set of all equivalence classes of maximal relevant republishers is denoted as

MR
q =

{
[R]q

∣∣ R ∈MR
q

}
. (5.25)
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The pair Mq = (MR
q , MS

q ) is the meta query plan for q. The meta query plan can

then be used to construct a valid query plan for the query q.

A sequence 〈R1, . . . , Rk〉 of republishers that is obtained by choosing one represen-

tative from each class of republishers in MR
q is called a supplier sequence for q. Let

〈R1, . . . , Rk〉 be a supplier sequence for q and S1, . . . , Sl be the stream producers in

MS
q . Suppose the descriptive views of the Ri have the conditions Di. The canonical

republisher query for the sequence is defined as

QR = σC1(R1) ] · · · ] σCk
(Rk), (5.26)

where C1 = C and Ci = C ∧ ¬(D1 ∨ · · · ∨Di−1) for i ∈ 2..k. Similarly the canonical

stream producer query is defined as

QS = σC′(S1) ] · · · ] σC′(Sl), (5.27)

where C ′ = C ∧ ¬(D1 ∨ . . . ∨Dk).

The selection conditions on the disjuncts in QR ensure that Ri only contributes

channels that no Ri′ with i′ < i can deliver, and the condition C ′ in QS guarantees

that producers only contribute channels that cannot be delivered by the republishers.

Note that the conditions Ci depend on the order of republishers in the sequence,

but once the order is fixed, they do not depend on which republisher is chosen from

an equivalence class. Moreover, although syntactically the conditions C ′ in QS may

differ for different supplier sequences, they are all equivalent.

Theorem 5.11 Let q be a global query, QR be the canonical republisher query, and

QS be the canonical stream producer query for some supplier sequence for q. Then, a

plan for q is

Q = QR ]QS. (5.28)

Proof. (Sketch) To prove that Q is a plan, it is required to show that Q is sound and

complete for q, duplicate free and weakly ordered.

The conditions in the selections of Q satisfy (5.10) and thus ensure soundness.

They also satisfy (5.17) and thus ensure duplicate freeness. Completeness is guar-

anteed because Q satisfies the properties stated in Theorem 5.3 because maximal

republishers are chosen for Q, together with producers that are not subsumed by
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a republisher. Finally, Q is weakly ordered because the republishers used in Q are

relevant and thus satisfy the Measurement Entailment Property.

The query planning mechanism presented will now be illustrated by considering

two example queries on the network throughput (ntp) relation. As previous presented

in (4.1) and (5.1), the schema for the ntp relation is

ntp(from, to, tool, psize, latency, [timestamp]). (5.29)

The publisher configuration P0 for the example consists of five producers and three

republishers. The producers are located at three sites: Heriot-Watt (hw), Rutherford

Appleton Laboratory (ral), and London (lon). There are two separate tools used for

generating the network throughput measures: the pinger tool and a UDP monitoring

tool. The views registered by the producers are:

S1 := σfrom=’hw’ ∧ tool=’udpmon’(ntp) S2 := σfrom=’hw’ ∧ tool=’ping’(ntp)

S3 := σfrom=’ral’ ∧ tool=’ping’(ntp) S4 := σfrom=’ral’ ∧ tool=’udpmon’(ntp)

S5 := σfrom=’lon’ ∧ tool=’ping’(ntp)

The republishers that are registered are

R1 := σfrom=’hw’(ntp) R2 := σfrom=’ral’(ntp)

R3 := σfrom=’hw’ ∧ tool=’ping’(ntp).

Republisher R1 collects all the ntp measurements which originate at the Heriot-Watt

site. Similarly, republisher R2 collects all the measurements originating at Rutherford

Appleton Laboratory. Republisher R3 collects all the ntp measurements originating

at Heriot-Watt that were made using the pinger tool. It is assumed that the publish-

ers organise themselves into a suitable structure. The interconnections between the

publishers are shown in Figure 5.1.

First consider the query

q1 := σfrom = ’hw’ ∧ psize ≥ 1024(ntp), (5.30)

which retrieves all measurements originating at Heriot-Watt which were generated for

a packet size greater than 1024 bytes. The first stage in the query planning process is
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psize >= 1024
from = ’hw’

q1:
latency <= 10.0
tool = ’ping’

q2:

Data Flow

Potential answer stream

from = ’hw’
R1:

from = ’ral’
R2:

R3:
from = ’hw’ /\
tool = ’ping’

from = ’hw’ /\
tool = ’udpmon’

S1:
from = ’ral’ /\
tool = ’ping’

S3:S2:
from = ’hw’ /\
tool = ’ping’

from = ’lon’ /\
tool = ’ping’

from = ’ral’ /\
tool = ’udpmon’

S5:S4:

Figure 5.1: Publisher configuration P0 with the plans derived for queries q1 and q2.

to find the set of relevant publishers. This is the set

{S1, S2, R1, R3 }. (5.31)

The next stage is to identify which of the relevant publishers are maximal and to

group them into the sets of maximal relevant republishers MR
q1

and maximal relevant

producers MS
q1

. The resulting sets are

MR
q1

= {R1 } (5.32)

MS
q1

= ∅. (5.33)

Since there is only one maximal relevant publisher for q1 the rest of the query planning

is straightforward. The meta query plan will contain just one equivalence class with

a single element. This one maximal relevant publisher will then be used to form the

query plan resulting the plan

Q1 = σfrom = ’hw’ ∧ psize ≥ 1024(R1), (5.34)

which selects all the answer tuples required for the query from the republisher R1.

The execution of this query plan is shown in Figure 5.1 by the solid line from R1 to

the consumer with the query q1.

Now consider the consumer with the query

q2 := σtool = ’ping’ ∧ latency ≤ 10.0(ntp), (5.35)

which asks for all measurements made with the pinger tool which had a latency less

than or equal to 10.0 seconds.
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The set of relevant publishers for q2 is

{S2, S3, S5, R1, R2, R3 }. (5.36)

From the set of relevant publishers, the sets of maximal relevant publishers are derived

as

MR
q2

= {R1, R2, R3 } (5.37)

MS
q2

= {S5 }. (5.38)

The set MR
q2

is then used to generate equivalence classes of republishers for the query.

The equivalence classes, along with the set MS
q2

, are then used to form the meta query

plan

Mq2 =
({
{R1, R3 }, {R2 }

}
,
{

S5

})
. (5.39)

Several query plans consistent with Mq2 are possible. However, they essentially re-

quire a choice in whether to consume from republisher R1 or republisher R3. The

possible connections resulting from the query plans are shown in Figure 5.1, the dot-

ted lines representing the choice that needs to be made.

The next stage in the query planning process is to generate a supplier sequence.

For the sake of the example, the following sequence shall be used,

〈R1, R2, S5〉. (5.40)

This supplier sequence is then used to form the query plan

Q2 = σtool = ’ping’ ∧ latency ≤ 10.0(R1) ]

σtool = ’ping’ ∧ latency ≤ 10.0 ∧ ¬(from=’hw’)(R2) ]

σtool = ’ping’ ∧ latency ≤ 10.0 ∧ ¬(from = ’hw’ ∨ from = ’ral’)(S5).

(5.41)

5.3.4 Discussion

The computation of query plans that use maximal relevant republishers involves sat-

isfiability and entailment checks. Clearly, this makes the task intractable in the worst

case if arbitrary conditions are permitted. However, if conditions in queries and views

are of the restricted form that have been considered here, namely conjunctions of the

form

attr1 op1 val1 ∧ . . . ∧ attrn opn valn,
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where opi ∈ {<, ≤, =, ≥, > }, then both satisfiability and entailment checks are

polynomial. They remain polynomial if slightly more general conditions are allowed by

admitting also comparisons between attributes of the form “attr1 op attr2” or limited

disjunctions of the form “attr in { val1, . . . , valn }”.

The query planning technique presented can be used for planning consumer queries

in the stream integration system. However, for planning republisher queries some

modifications are needed to ensure that plans do not introduce cyclic dependencies

between republishers. These techniques will be discussed in Chapter 6. Implementa-

tion decisions such as where to perform each part of the query planning tasks will be

discussed in Chapter 7.

5.4 Summary

This chapter has presented a formal model for a data stream. Properties and op-

erations have been defined that streams conforming to this model may have. The

model was then used to formalise the publication and querying of streams of data

that would be found in an implementation of the stream integration system proposed

in Chapter 4.

A key component of the stream integration system is the republisher. However,

these introduce redundancy in the data and mean that a choice must be made as to

where to retrieve data for a query. This choice is made by the plan for the query. Four

desirable properties, soundness and completeness with respect to a query, duplicate

freeness, and weak order, for a query plan were identified and defined.

Finally, a mechanism was presented for generating query plans for consumer

queries in the presence of republishers that were guaranteed to produce answer streams

with the four desirable properties. The next chapter will consider how these query

plans are affected by changes to the publisher configuration and how the mechanism

can be altered to accommodate republisher queries.
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A continuous query is expected to be executed over a long period of time. Over time,

the publisher configuration will change as new publishers are created, or existing

ones are removed or fail. Thus, the query plan for a long-lived continuous query will

need to be amended to reflect the changes in the publisher configuration in order to

maintain the desirable properties of a query plan. Failure to update the query plans

could result in a query not receiving the complete answer stream and in the worst

case would result in no answer stream being returned.

This chapter begins by considering how the query plan for a consumer query can

be maintained when the publisher configuration changes, i.e. how the query plan can

be amended to reflect a new publisher configuration without needing to replan the

query from scratch.

Section 6.2 goes on to consider the problem of generating query plans for the

queries posed by the republishers. These should guarantee the four desirable proper-

ties of soundness and completeness with respect to the query, duplicate freeness, and

weak order, but must also ensure other properties to provide answer streams in an

efficient manner. These properties will be identified and mechanisms to generate and

maintain republisher query plans detailed.

The work in this chapter has been published in [112, 113].
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6.1 Maintaining Consumer Query Plans

When there is a change in the publisher configuration, the query plans of consumers

must be adapted to the new situation to ensure the properties for the answer stream.

A meta query planMq, as defined in Chapter 5, depends on two parameters: a global

query q, which is explicit in the notation, and a publisher configuration P , which so

far was taken to be fixed. However, during the execution period of a global query

which is long lived, it is possible that P changes to a new configuration P ′ because

new publishers arise or existing ones vanish. As a consequence, the meta query plan

for q in the new configuration P ′ may differ from the one in P and the query plan

may have to change as well. To make the dependency on the publisher configuration

explicit, in this section meta query plans for q w.r.t. P and P ′ shall be written as

Mq(P) andMq(P ′), respectively.

One possibility to move from Mq(P) to Mq(P ′) would be to compute the new

meta query plan from scratch. However, it is likely that the meta query plan will

remain mostly the same or not need to be changed since the difference between the

two configurations is just one publisher. Therefore, it is likely to be more efficient to

1. Identify when at allMq(P) is affected by a change of P .

2. Amend Mq(P), whenever this is possible, based on the information contained

inMq(P) and the publisher involved in the change.

The rest of this section shall investigate formally how adding a publisher to P or

deleting one affects meta query plans. Without loss of generality, it is assumed that

all publishers added to or deleted from P are relevant for q, since other changes do

not have an effect on the meta query plan.

As a running example through this section the publisher configuration P0, which

was introduced in Section 5.3.3, for the network throughput (ntp) relation will be

considered. Again, the schema consists of

ntp(from, to, tool, psize, latency, [timestamp]). (6.1)
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Figure 6.1: Publisher configuration P0 with the plans derived for queries q1 and q2.

The publisher configuration consists of the publishers

S1 := σfrom=’hw’ ∧ tool=’udpmon’(ntp) S2 := σfrom=’hw’ ∧ tool=’ping’(ntp)

S3 := σfrom=’ral’ ∧ tool=’ping’(ntp) S4 := σfrom=’ral’ ∧ tool=’udpmon’(ntp)

S5 := σfrom=’lon’ ∧ tool=’ping’(ntp)

R1 := σfrom=’hw’(ntp) R2 := σfrom=’ral’(ntp)

R3 := σfrom=’hw’ ∧ tool=’ping’(ntp).

Again, the consumer queries

q1 := σfrom=’hw’ ∧ psize≥1024(ntp), and

q2 := σtool=’ping’ ∧ latency≤10.0(ntp),

are considered. Figure 6.1 illustrates the data connections that were assumed for the

republishers along with the query plans derived by the planning mechanism detailed

in Chapter 5.

6.1.1 Adding a Producer

If a relevant producer S0 is added then there are two cases to be considered. If S0

is subsumed w.r.t. q by an existing maximal republisher, say R, then all the data

coming from S0 will be republished by R and, similarly, by every republisher in [R]q,

the equivalence class of R. Since the current meta query plan contains the class [R]q,
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no change is needed. However, if S0 is not subsumed by a maximal republisher, then

it has to be added to the set of maximal relevant producers.

Proposition 6.1 Suppose P ′ = P ∪ {S0 }. Then:

1. If there is a class [R]q ∈MR
q such that S0 �q R, then Mq(P ′) =Mq(P);

2. If there is no such class, then Mq(P ′) = (MR
q , MS

q ∪ {S0 }).

Proof. The only change in the publisher configuration from P to P ′ is the addition

of the producer S0. Since the republisher configuration has not changed then MR
q

will remain unchanged.

If S0 is not maximal relevant for q then there must exist a republisher R that is

maximal relevant for q in P ′ such that S0 �q R. SinceMR
q is unchanged from P then

R is maximal relevant for q in P and appears inMq(P). Thus,Mq(P) =Mq(P ′).

On the other hand, if S0 is maximal relevant for q in P ′ then there does not exist

a republisher R in P ′ such that S0 �q R and as such S0 should appear inMS
q .

For the running example, consider adding a producer that publishes details about

PingER messages originating at Glasgow to the configuration P0. The view registered

by the new producer is

S6 := σfrom=’gla’ ∧ tool=’ping’(ntp). (6.2)

Since S6 is not relevant for q1, due to the unsatisfiability of their conditions, there

is no effect on either the meta query plan or the query plan of q1. Producer S6 is

relevant for q2. The situation is that of case 2 of Proposition 6.1, since there are

no republishers that would collect the data published by S6. In this instance the

producer would be added to both the meta query plan and query plan of q2. The

resulting configuration P1 is shown in Figure 6.2.

6.1.2 Deleting a Producer

If a relevant producer S0 is dropped, then the situation is similar to the previous one.

If S0 is not a maximal relevant producer, i.e. if it is subsumed by some republisher,

then the meta query plan is not affected by the change. Otherwise it has to be

removed from the set of maximal relevant producers.
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Figure 6.2: The data connections of Publisher Configuration P1 and the effects on

queries q1 and q2.

Proposition 6.2 Suppose P ′ = P \ {S0 }. Then:

1. If S0 /∈MS
q , then Mq(P ′) =Mq(P);

2. If S0 ∈MS
q , then Mq(P ′) = (MR

q , MS
q \ {S0 }).

Proof. The only change in the publisher configuration from P to P ′ is the removal of

the producer S0. Since the republisher configuration has not changed then MR
q will

remain unchanged.

If S0 is not maximal relevant for q in P then S0 does not appear inMq(P). Since

the removal of S0 is the only change in the publisher configuration then Mq(P) =

Mq(P ′).

On the other hand, if S0 is maximal relevant for q in P then it appears inMS
q (P).

Since producers do not have any effect on the maximal relevance of any other publisher

the only change required to the query plan is to remove S0 fromMS
q (P).

This will be illustrated with the running example by removing producer S6 from

P1 to return to configuration P0. Since S6 is not relevant for q1 there is no effect. For

q2 producer S6 was maximal relevant so case 2 of Proposition 6.2 applies. Thus, S6 is

removed from the meta query plan and query plan of q2.
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6.1.3 Adding a Republisher

The situation becomes more complex when a relevant republisher R0 is added. There

are three possible cases to be considered:

1. R0 is strictly subsumed by some maximal republisher R, i.e. R0 ≺q R;

2. R0 is equivalent to some maximal republisher R, i.e. R0 ∼q R; or

3. R0 is not subsumed by any existing maximal republisher.

In case 1, R0 is not needed in the meta query plan, while in case 2, R0 needs to be

added to the class [R]q. In case 3, R0 will form a new equivalence class of its own.

Moreover, it may be the case that R0 subsumes some existing maximal relevant pro-

ducers and republishers. If it does, then the subsumption is strict and the publishers

concerned have to be removed from the meta query plan.

Proposition 6.3 Suppose P ′ = P ∪ {R0 }. Then:

1. If there is a class [R]q ∈MR
q such that R0 ≺q R, then Mq(P ′) =Mq(P);

2. If there is a class [R]q ∈MR
q such that R0 ∼q R, thenMq(P ′) is obtained from

Mq = (MR
q , MS

q ) by replacing the class [R]q in MR
q with [R]q ∪ {R0};

3. If there is no class [R]q ∈MR
q with R0 �q R, thenMq(P ′) = (MR

q
′
, MS

q
′
) where

• MR
q
′
is obtained from MR

q by adding the class {R0 } and removing all

classes [R′]q with R′ �q R0

• MS
q
′
is obtained from MS

q by only keeping the producers that are not sub-

sumed by R0, i.e.

MS
q

′
= {S ∈MS

q | S 6�q R0 }.

Proof. The argument for case 1 is similar to that of adding a producer that is not

maximal relevant for q.

In case 2 there exists a [R]q ∈ Mq(P) such that R0 ∼q R. From the definition of

equivalence any publisher subsumed by R0 will be subsumed by R. Thus, the only

change to the meta query plan is to add R0 to the equivalence containing R.
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In case 3 there does not exist an equivalence class [R]q ∈Mq(P) such that R0 �q R.

This implies that R0 is maximal relevant for q in P ′, not equivalent to any other

publisher and should be in an equivalence class where it is the only member.

Next, it is shown that a publisher P where P ∈Mq(P) may no longer be maximal.

By the assumption of this case, R0 is not subsumed by any publisher P ∈ P but this

does not preclude P �q R0. This subsumption is strict since R0 is not subsumed

w.r.t. q. Thus, P is not maximal relevant for q in P ′ and not a member ofMq(P ′).

Finally it is shown that a publisher P which was not maximal in P remains so in

P ′. Since P is not maximal relevant then there exists a republisher R′ ∈Mq(P) such

that P ≺q R′. If R′ ∈ Mq(P ′) then it is still the case that P ≺q R′. Otherwise, for

R′ not to be in Mq(P ′) it must be the case that R′ ≺q R0. Since subsumption is a

transitive relation it follows that P ≺q R0. Thus, no publisher other than R0 can be

added toMq(P) to formMq(P ′).

Consider again the publisher configuration P0 and the effect of adding the repub-

lisher

R4 := σtrue(ntp), (6.3)

which gathers all tuples published for the ntp relation. With regard to the consumer

query q1, case 2 holds since R4 ∼q1 R1. Thus, R4 would be added to the equivalence

class of R1 inMq1 . There is no need to change the query plan of q1 as the old plan is

consistent with the new meta query plan. For q2, case 3 holds as R4 subsumes with

respect to q2 all the maximal relevant publishers. The new meta query plan would be

derived by dropping all the current equivalence classes and maximal producers and

adding the new equivalence class [R4]q2 . Obviously the query plan of q2 will also need

to be updated to make it consistent with the new meta query plan. Techniques to

switch between query plans are discussed in Section 7.4. The situation in the resulting

configuration P2 is illustrated in Figure 6.3.

6.1.4 Deleting a Republisher

Similar to the previous situation, three cases can be distinguished when a republisher

R0 is dropped:

1. R0 is strictly subsumed by some maximal republisher R, i.e. R0 ≺q R;
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Figure 6.3: Consumer queries q1 and q2 being posed at publisher configuration P2.

2. R0 is equivalent to some other maximal republisher R, i.e. R0 ∼q R; or

3. R0 is not subsumed by any existing maximal republisher.

In case 1 the meta query plan is not affected, while in case 2 the republisher R0 needs

to be deleted from its equivalence class. Case 3, by contrast, requires more action.

The reason is that, intuitively, the deletion of R0 leaves a hole in the set of data that

can be delivered by the remaining publishers in the meta query plan.

To “patch” the hole, those relevant publishers need to be identified that were

not maximal relevant in the presence of R0, but are promoted to maximal relevant

ones after the removal of R0. This is done in two stages. First the republishers are

considered and then the producers. The patch of MR
q for R0 is defined as the set M ′

consisting of those republishers R′ relevant for q where

1. It is the case that R′ ≺q R0 and

2. There is no R ∈MR
q \ {R0 } such that R′ ≺q R.

Then the new setMR
q
′
is obtained by removing the class [R0]q fromMR

q and adding

the classes obtained from the elements of M ′. Secondly, some producers that were

subsumed by R0 may not be subsumed by the newly promoted maximal republishers

and have to be added to the set MS
q to yield MS

q
′
.

Proposition 6.4 Suppose P ′ = P \ {R0 }. Then:

1. If R0 /∈MR
q , then Mq(P ′) =Mq(P);
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2. If R0 ∈ MR
q and there is another R ∈ MR

q with R0 ∼q R, then Mq(P ′) is

obtained from Mq = (MR
q , MS

q ) by replacing the class [R]q in MR
q with [R]q \

{R0};

3. If R0 ∈MR
q and the class [R0]q ∈MR

q is a singleton, thenMq(P ′) = (MR
q
′
, MS

q
′
)

where

• MR
q
′
is obtained from MR

q by removing the class {R0 } and adding all

classes [R′]q such that R′ ∈M ′ is in the patch M ′ of MR
q for R0

• MS
q
′
is obtained from MS

q by adding those producers relevant for q that

were subsumed by R0, but are not subsumed by any republisher in MR
q
′
.

Proof. In case 1, R0 /∈ MR
q implies that R0 is not maximal relevant for q. Thus,

there exists a republisher R ∈MR
q such that R0 ≺q R and R0 is not inMq(P). Since

the only difference between P and P ′ is the removal of R0 thenMq(P) =Mq(P ′).

In case 2, R0 ∈ MR
q and there exists another republisher R ∈ MR

q with R0 ∼q R.

Thus, for any publisher P where P �q R0 holds then by the definition of equivalence

P �q R must also hold and thus both republishers will be members of the same

equivalence class. Since the only difference between P and P ′ is the removal of R0

it must be the case that R will remain maximal relevant for q in P ′. Hence, the

equivalence class [R]q in P ′ will contain all of the republishers that were in [R]q in P

with the exception of R0 as it no longer exists.

In case 3 it is required to show that the result of using the patch is the same as if the

query were planned from scratch. The patch M ′ considers republishers R′ which are

relevant for q such that

1. It is the case that R′ ≺q R0, and

2. There does not exist a republisher R ∈MR
q \ {R0 } such that R′ ≺q R.

Suppose there exists a republisher R1 such that R1 /∈MR
q (P), R1 ∈MR

q (P ′), and

R1 /∈M ′.

For R1 /∈MR
q (P) it must be the case that there exists a republisher R2 such that

R1 ≺q R2. However, for R1 ∈ MR
q (P ′) it must be the case that R2 no longer exists.

The only republisher that no longer exists is R0 so R2 must be R0.
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Figure 6.4: Consumer queries q1 and q2 being posed at publisher configuration P3.

For R1 /∈ M ′ to hold it must be the case that either R′ ≺q R0, or there does

not exist a republisher R ∈ MR
q \ {R0 } such that R′ ≺q R, do not hold. It has

already been shown that the only republisher that subsumes R1 is R0 so this leads to

a contradiction.

Therefore, it is the case that the patch contains all republishers that become

maximal relevant in P ′.

All maximal relevant producers are found since all relevant producers that were

not previously maximal relevant are considered.

The situation of dropping a republisher will now be shown with the running exam-

ple. Consider the case of dropping republisher R1 from P2 to create P3. Republisher

R1 is a maximal relevant publisher for q1 which is equivalent w.r.t. q1 to R4. Hence

case 2 holds and the equivalence class {R1, R4 } in Mq1(P2) is replaced with the

equivalence class {R4 } to give the meta query planMq1(P3) =
({
{R4 }

}
, ∅

)
. For

q2, republisher R1 is not maximal relevant so case 1 of Proposition 6.4 holds and the

meta query plan and query plan are unchanged.

The situation in configuration P3 is shown in Figure 6.4. The consumer query q1

no longer has a choice in the publisher to contact to retrieve its answer stream. It

must now contact R4, hence the data line from R4 to q1 in Figure 6.4 is now solid.

Note that if the consumer had been using publisher R1 in its query plan then it would

need to “switch” to a new query plan using R4. Mechanisms to perform this switch

are discussed in Section 7.4.
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6.1.5 Discussion

The propositions above show that plan maintenance is straightforward if producers

come or go and is more complicated when the set of relevant republishers changes.

The reason is that the streams of producers are only sound with respect to their

descriptive views, but republisher streams are both sound and complete. As a conse-

quence, a republisher can replace other publishers, which is impossible for a producer.

The implications of maintaining query plans during the execution of a query will be

discussed in Section 7.4.

The cost of performing the plan maintenance operations is polynomial in the num-

ber of publishers involved, providing that subsumption can be checked in polynomial

time. From the cases considered, and those so far encountered with the r-gma sys-

tem, this is often the case since conditions can only contain conjunctions. Of course,

if conditions can contain disjunctions then the problem is NP-hard.

6.2 Planning and Maintaining Republisher Queries

In order to answer their queries efficiently, and to provide some protection from

changes to the publisher configuration, consumer query plans make use of the partial

answers provided by republishers. Similarly, republishers should also include other

republishers in their query plans. This leads to a hierarchy of republishers through

which data streams can flow. A straightforward approach would be to construct and

maintain plans and meta plans for republishers in the same way as for consumers.

However, a simple example shows that this does not work.

Consider the publisher configuration P ′ consisting of the publishers S1, R1, and

R4, as defined in Section 6.1. Applying the planning and maintenance techniques

developed for consumer queries would result in the republishers having the meta query

plans MR1 =
({
{R4 }

}
, ∅

)
, and MR4 =

({
{R1 }

}
, ∅

)
. The only corresponding

query plans are QR1 = σfrom=’hw’(R4), and QR4 = σtrue(R1).

The resulting hierarchy illustrated in Figure 6.5 is unsatisfying for two reasons.

1. The republishers are not connected to the producer.

2. There is a cycle in the dependency relation of the republishers in that R1 con-
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Figure 6.5: The result of using consumer planning techniques for republisher queries.

sumes from R4 and vice versa.

Obviously, the first fact prevents the republishers from obtaining any data. Moreover,

if there are cyclic dependencies between republishers, tuples could travel an infinite

number of times along the cycle. The volume of the resulting stream could grow

indefinitely, and the stream would be neither duplicate free nor weakly ordered.

6.2.1 Requirements of a Publisher Hierarchy

Before developing the mechanism for constructing and maintaining query plans for

republisher queries, the properties that a publisher hierarchy should have are identi-

fied.

It is anticipated that query plans for republishers should be unions of selections

over publishers and each republisher has a meta query plan from which the actual

plans can be formed. Moreover, the mechanism should produce some kind of meta

query plan that contains a set of candidate publishers on which actual plans are based.

The query plans executed by the republishers define a dependency relation among

the publishers called the physical hierarchy, that is, one through which the data flows.

The meta query plans of the republishers define a more general dependency relation

called the logical hierarchy.

The requirements that are essential for any planning and maintenance mechanism

for republishers are:

Correctness: The plan for each republisher should be sound and complete for the

defining query as well as duplicate free and weakly ordered.
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Cycle Freeness: Neither the physical nor the logical hierarchy should contain any

cycles.

Uniqueness of the Logical Hierarchy: The logical hierarchy should only depend

on the publisher configuration P . The way in which it has been created, i.e. the

order in which publishers have been added and deleted, should have no influence

on it.

Local Query Planning: To create its query plan and meta query plan, a repub-

lisher should not need any information about the plans and meta plans of other

republishers.

Clearly, a plan that is not correct would fail to implement the republisher and can

lead to the republishers being disconnected from the producers, as in the example

above.

The physical hierarchy of the example contains a cycle. The effects of the cycle

are that data would continuously flow around the cycle increasing the amount of data

flowing through the system. Since cycles in the logical hierarchy may give rise to

cycles in the physical hierarchy, they need to be ruled out too.

A logical hierarchy will be much easier to understand if it depends only on the

structure of a configuration and not on its history. Then, for a given publisher con-

figuration, regardless of the order that the publishers were added the same logical

hierarchy will be created.

For the physical hierarchy, which is a subrelation of the logical hierarchy, a repub-

lisher should be allowed to form it as it sees fit. If query planning is local, republishers

only need to communicate with the registry service and not with other republishers.

The physical hierarchy may depend on the order in which the publishers have been

added to the system.

6.2.2 Generating and Maintaining Republisher Query Plans

A general analysis shows that cycles and missing links to producers as in the example

above are a consequence of the definition of relevant publishers in Proposition 5.9. To

avoid cycles, for two republishers R1 and R2 it should be impossible that both R1 is

relevant for R2 and at the same time R2 is relevant for R1.
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To refine the concept of relevance the general subsumption relation introduced in

Section 5.3.2 is considered. Let P be a publisher with the view σDκ ∧ Dµ(r) and R

be a republisher with the view σEκ ∧ Eµ(r). Publisher P is subsumed by R, written

P � R, if

Dκ |= Eκ and Eµ |= Dµ. (6.4)

Intuitively, this means that R delivers tuples for a channel if P does so, and that for

its channels, P delivers all the values that R delivers. Publisher P is strictly subsumed

by R, written P ≺ R, if P � R, but not R � P . Clearly, if both R1 is subsumed by

R2 and R2 by R1, then the view conditions of R1 and R2 are logically equivalent.

This notion of general subsumption is used to modify the definition of relevance

from Lemma 5.10 to that of Proposition 6.5. One readily verifies that strong relevance

implies relevance.

Proposition 6.5 (Strong relevance) A producer is strongly relevant if it is rele-

vant for the query of R0 and a republisher R is strongly relevant for R0 if R ≺ R0.

Reconsider the example from the beginning of Section 6.2. In P ′, both S1 and R1

are strongly relevant for R4 while only S1 is strongly relevant for R1. If instead of

relevant publishers, only strongly relevant publishers are admitted to query planning,

then the meta query plan for R1 in P ′ is MR1(P ′) =
(
∅, {S1 }

)
, while the meta

query plan for R3 is MR4(P ′) =
({
{R1 }

}
, ∅

)
. The corresponding query plans are

QR1 = σfrom=’hw’(S1) and QR4 = σtrue(R1). Neither the physical nor the logical

hierarchy contain a cycle. The next proposition shows that this is not accidental.

Proposition 6.6 If meta query plans for republishers are only based on strongly rel-

evant publishers, then all plans derived from them are correct. Moreover, for any

publisher configuration, there is a unique logical hierarchy, which is cycle free, and

meta query plans and query plans can be computed locally by each republisher.

Intuitively, the result holds for the following reasons. Plans are still correct, as

they were for consumer queries, because the relevance criterion for producers has not

been changed. A plan using only strongly relevant republishers may have to access

more producers than one relying on relevant republishers, because fewer producers are

made redundant by the republishers considered. By definition, the logical hierarchy
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depends only on the publishers and their conditions, which uniquely determine it.

Since any strongly relevant publisher for republisher R is strictly subsumed by R,

there cannot be any cycles in the logical hierarchy. A plan can be computed by an

individual republisher based on information about its strongly relevant publishers,

without co-ordinating the planning with other republishers.

The meta query plan for a consumer or republisher query q is defined in terms of

relevant or strongly relevant publishers respectively, that are maximal relevant with

respect to the quasiorder “�q”. A closer inspection of the results in Section 6.1 reveals

that all four propositions hold, independently of how relevant publishers are defined.

Therefore, the maintenance techniques of that section can be applied directly for

republisher queries.

6.3 Summary

This chapter has considered the effect of a change in the publisher configuration on

the query plan for a consumer query. It was shown that in the majority of cases,

the query plan could be updated to reflect the new publisher configuration by using

the information contained in the meta query plan and details of the publisher that

has caused the change in the configuration. This was not possible when a republisher

was being removed from the system which was the only publisher in an equivalence

class in the meta query plan. While plan maintenance is only required, from the

point of view of ensuring the four desirable properties of an answer stream, when a

republisher is removed from the system or a producer is added, it is recommended that

these techniques be followed whenever there is a change in the publisher configuration

to ensure that queries are answered by using the republishers as much as possible.

The chapter then considered the problem of generating and maintaining query

plans for republisher queries. It was shown that the query planning techniques devel-

oped for consumer queries were not suitable. Properties for a hierarchy of publishers

were identified and it was then shown that making a small amendment to the relevance

criteria would ensure that these properties held. Since the maintenance techniques for

consumer query plans did not rely on the relevance criteria used, these results follow

immediately for republisher queries.
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The techniques developed in the last two chapters allow a stream integration

system to generate and maintain query plans for selection queries over a global schema.

The next chapter shall consider how to implement these techniques.
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Implementation Details

This chapter considers the design decisions that need to be taken in order to imple-

ment the stream integration system proposed in Chapter 4 together with the query

planning and maintenance techniques developed in Chapters 5 and 6. Where neces-

sary, these decisions are guided by the motivating application of a Grid information

and monitoring system.

Section 7.1 will consider the functionality required from each of the components

in the proposed stream integration system to implement the query planning and

maintenance mechanisms. Much of the infrastructure required is already available in

the implementation of the r-gma system, which is a partial implementation of the

proposed stream integration system. Thus, details of the r-gma implementation will

be given in Section 7.2.

In the r-gma system only producers are considered when planning the execution

of a continuous query. Section 7.3 discusses the issues in implementing the extended

query planning and maintenance mechanisms to allow republishers to be used to

answer continuous queries.

The final section of this chapter will consider how, in the extended implementa-

tion, the transition from one query plan to another can be managed. However, the

implementation and testing of these protocols was deemed to be beyond the scope of

this thesis.
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7.1 Implementing the Stream Integration System

The stream integration system proposed in Chapter 4 consisted of several components,

the interaction of which was shown in Figure 4.1. However, the functionality of the

components with regard to query planning and maintenance was not considered. The

choices that need to be made about which part of the query planning and maintenance

mechanisms are performed by which components shall now be considered.

When a new continuous query is added to the system by either a consumer or a

republisher, a query plan must be generated to answer the query. The query planning

mechanism requires details of the publishers that are stored by the registry service

together with the ability to perform the subsumption tests detailed in Section 5.3.

Three ways in which the query planning can be performed by the agent responsible

for the query and the registry service are:

1. The registry service generates a query plan and passes it to the agent.

2. The registry service informs the agent of all publishers registered in the system

and the agent generates the query plan.

3. The registry service identifies the relevant publishers for the continuous query,

passes their details to the agent, and the agent generates the query plan.

In the first case, the registry service must perform all the computation to identify

the relevant publishers, to group these into equivalence classes, and then to generate

the meta query plan and the query plan. This places a significant burden on the

registry service which would conduct this for every consumer and republisher in the

system. The registry service would also need to store all of the meta query plans in

order to gain the maintenance benefit from generating them. However, the information

that needs to be communicated to the agent is minimised as only contact details of

the publishers in the plan together with the local query to be posed need be sent to

the query agent.

In the second case, the computation that the registry service must perform is

minimised. The registry service simply sends the details of all the publishers, including

their view descriptions, that are registered in the system to the agent. However, this

will generate an excess of network traffic as details of many publishers which are not
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relevant to the continuous query will also be sent to the agent, i.e. details of publishers

which can never be part of the query plan are also sent to the agent.

The third option provides a compromise between the previous two by minimising

both the communication and computational load on the registry service. The registry

service identifies which publishers are relevant to the continuous query, and only

sends details of publishers that can potentially be used in the query plan but without

performing all of the computation required to generate the meta query plan and query

plan.

The situation is similar when there is a change in the publisher configuration,

the query plans of existing continuous queries must be updated to reflect the new

publisher configuration. Three cases, similar to those for a new continuous query, are

considered:

1. The registry service identifies all continuous queries that are potentially affected

by the change in the publisher configuration, updates each of the meta query

plans and query plans accordingly and sends the updated plans to the agents.

2. The registry service informs all continuous queries of the change in the publisher

configuration and the agent updates their own meta query plan and query plan

accordingly.

3. The registry service identifies those continuous queries that are potentially af-

fected by the change in the publisher configuration and informs their agents.

Each of these agents then updates their meta query plan and query plan ac-

cordingly.

Again, the first case minimises the communication load on the registry service,

the second case reduces the computational load on the registry service, and the third

case attempts to minimise both the communication and computational load.

For both the query planning and the maintenance, following an approach that

minimises both the communication and computational load on the registry service best

meets the requirements of the motivating application domain of a Grid information

and monitoring system and of distributed computing systems in general.

The query planning and maintenance mechanisms require that the stream inte-

gration system infrastructure provide certain capabilities. These are:
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• Communication between components: the registry service needs to be able to

send details of publishers to the consumer agent. These details will include how

to contact the publisher agent and also the view condition of the publisher.

• Data streaming: the publisher agents must be able to stream data to the con-

sumer and republisher agents that satisfy the query posed.

• Registration information: the publisher and consumer agents need to be able

to register their details in the registry. The registry also needs a mechanism

to eliminate details of components that no longer exist due to some network

problem.

• Identification of relevant components: the registry service needs to be able to

quickly find all relevant publishers for a consumer query and all relevant con-

sumers and republishers for a change in the publisher configuration.

• Smart agents: the consumer agent must be able to generate meta query plans

and query plans. This requires that the agent is capable of performing the

subsumption check detailed in Section 5.3.2, and to group the republishers into

equivalence classes.

The r-gma system already provides much of the required infrastructure. Cur-

rently, due to the limited query planning employed for continuous queries it does not

have smart agents. The next section will discuss the details of the r-gma imple-

mentation and present its current query planning and maintenance techniques. The

subsequent sections will then consider how the existing query planning and main-

tenance techniques can be extended to allow republishers to be used to answer a

continuous query.

7.2 The R-GMA System

The implementation of the r-gma system [89, 108, 111] began as part of the EU

DataGrid project [80] and is continuing as part of the ongoing EU EGEE [81] project.

During the EGEE project, the implementation of the r-gma system has been un-

dergoing a major redesign to consolidate the system and to make it more robust
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[111, 10, 114]. In order to isolate the development of the extended query planning

and maintenance mechanisms from these changes in the implementation of the r-

gma system, a stable code release was chosen. This was r-gma version 4.1.11 which

formed part of the gLite 1.4 code release.

The r-gma system has already taken implementation decisions on allocating query

planning and maintenance tasks to specific components. The r-gma system used the

same criteria as discussed above to help ensure that the resulting system was a reliable,

scalable distributed system that did not have a bottleneck.

The following sections will give a brief overview of the implementation of the r-

gma system and then discuss the continuous query planning and maintenance mech-

anisms. For the purposes of presentation, the terminology of the stream integration

system will be used rather than the system names used in r-gma. That is, the streams

of data are published by producers, queries are posed by consumers, and republishers

pose a query and make the resulting data available. In the r-gma system these com-

ponents are now known as primary producers, consumers, and secondary producers

respectively.

7.2.1 Design of the Implemented R-GMA

The r-gma implementation used consists of a set of services (offered as Java Servlets)

that support the Grid resources (that play the role of producer or consumer) in pub-

lishing and querying the Grid information and monitoring data. The Grid resources

interact with the services through application programming interfaces (APIs) offered

in C, C++, Java, Perl, and Python.

A UML component diagram of the r-gma services is presented in Figure 7.1. The

dependencies in the diagram show which services make a request to another service.

In a Grid deployment there would be several instances of the producer service and

consumer service hosted on web servers across the Grid. Ideally, the registry service

and schema service would also have several instances spread across the Grid. However,

the version of r-gma used did not support replication of the registry or schema

services. This will not affect the implementation of the extended query planning and

maintenance mechanisms.

The r-gma services provide a realisation of the agent metaphor used in Section 4.1.
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Figure 7.1: A UML component diagram of the services of the r-gma system.

The agents provide all the r-gma knowledge required to perform the tasks, e.g. the

producer agent allows the producer to insert tuples and responds to queries on behalf

of the producer. Each Grid resource has its own agent. A single service may host

several agents.

The r-gma system only provides limited republisher functionality. A republisher

is able to pose one or more continuous queries which collect the data from several

producers. The republisher makes either the history or the latest-state of the result-

ing streams available. This functionality is realised by combining several consumer

instances together with a producer instance within a single component. At present,

due to the query planning mechanisms employed in r-gma, a republisher may not

be used to answer a continuous query. However, these republishers are useful for an-

swering one-time queries and make it possible for complex queries, such as a join, to

be answered. Details of the query planning for one-time queries in the r-gma system

can be found in [108].

The schema and registry services are not directly accessible to the Grid resources.

The functionality provided by these services is accessed through the agents. The

schema maintains the set of relations in the global schema. It allows agents to look

up properties of the relations, e.g. the attributes and types in a specific relation.

Whenever a new query or view is declared, these must be checked for validity against

the relations stored in the schema.

The registry service is responsible for three bits of functionality:

1. Storing details of the components that are registered with the system.
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2. Identifying relevant producers for a query1.

3. Identifying relevant consumers for a new producer.

Details of each of these will be discussed in the following sections.

7.2.2 Storing the Registration Data of the Components

The registry service maintains details of all publishers and consumers with continuous

queries that are registered in the system. The registration details of the components

need to be stored in a reliable data structure which can be searched easily and updated

whenever a component is added to or removed from the system.

The details that need to be stored about the components must include the URL

where the component’s agent is located along with an identifier for the agent so that

it can be contacted. The registry should also store details of the view registered by a

producer and the continuous query posed by a consumer or a republisher.

In the r-gma system, the view of a producer may only be a selection on a single

relation in the global schema. The conditions in the view are limited to conjunctions

of the form

attr = value. (7.1)

Thus the registry service need only store the attribute-value combinations.

The continuous queries permitted are more expressive than the views of the pro-

ducers but are still limited to selections on a single relation in the global schema. The

query conditions are conjunctions of the form

attr op value, (7.2)

where the operator may be one of the following {<,≤, =,≥, > }2. Thus, for each

conjunct the registry service needs to store the operator as well as the attribute and

the value.

A database with a suitable schema meets these requirements as it can be searched

efficiently and updated as required. A simplified version of the schema of the database

1Only continuous queries will be considered here.
2r-gma does not support 6=.
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Consumers(URL, connectionId, tableName, predicate, flags,

clientTimeStamp, terminationTime)

Producers(URL, connectionId, tableName, flags,

clientTimeStamp, terminationTime)

FixedStringColumns(URL, connectionId, tableName, columnName, value)

FixedIntColumns(URL, connectionId, tableName, columnName, value)

FixedRealColumns(URL, connectionId, tableName, columnName, value)

Figure 7.2: r-gma registry database schema.

used by the registry service in r-gma, which omits attributes introduced for the pur-

poses of replicating the registry, is provided in Figure 7.2. The underlined attributes

of each relation form the primary key.

The Consumers relation stores details of the continuous queries registered in the

system. This includes the URL of the consumer service and the connectionId of the

agent within that service. The tableName attribute stores the name of the relation

that the consumer is querying and the predicate of the query is stored as a string in

the predicate attribute. The flags attribute is used to encode whether the consumer is

part of a republisher or not. The final two attributes, clientTimeStamp and termina-

tionTime, are used to purge the database of old consumers. Together they are used as

a form of soft state registration which allows the registry service to remove entries of

defunct consumers, e.g. the consumer no longer exists due to a system crash and was

unable to send a remove consumer message. In order that the consumer agent can

maintain its entry in the registry database, it must periodically send a message to the

registry service. Upon receiving this message, the registry service updates the values

in these attributes. If this message fails to arrive, the value in the terminationTime

attribute will be exceeded and the consumer is no longer considered to be available

to the system.

Details of the producers are stored in the Producers relation. The attributes of this

relation are the same as for the Consumers except that there is no predicate attribute.
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This is because only the combination of attribute and value need to be stored, and

this can be achieved using a separate set of relations: one for each of the data types

supported by r-gma. These relations are the FixedStringColumns, FixedIntColumns,

and FixedRealColumns relations and are collectively referred to as the FixedColumns

relations. The FixedColumns relations store the restricted value for each conjunct in

the view that the producer declared with the value being stored in an appropriate

type format. The producer may only restrict each attribute once.

To demonstrate the information stored in the registry, consider the following com-

ponents.

The relations used in the example are the Network Throughput relation ntp and

the Cluster Computing Element relation CECluster. As previously introduced in (4.1),

the schema for ntp is

ntp(from, to, tool, psize, latency, [timestamp]). (7.3)

and as introduced in (4.6), the schema for CECluster is

CECluster(clusterId, name, URL). (7.4)

The details of the components are

• A consumer with the continuous query

σtool=’ping’ ∧ psize>24(ntp), (7.5)

which has an agent hosted on a suitable consumer service.

• Three producers with the view descriptions

S1 := σfrom=’hw’ ∧ tool=’ping’(ntp), (7.6)

S2 := σfrom=’ral’ ∧ psize=32(ntp), (7.7)

S3 := σclusterId=’hw’(CECluster), (7.8)

where each has an agent hosted on a suitable producer service.

• A republisher with the query

σfrom=’hw’ ∧ latency=30(ntp), (7.9)

which has suitable consumer and producer agents hosted on appropriate services.
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URL connectionId tableName predicate flags

con.info/ConsumerService 874 ntp tool = ’ping’ AND psize > 24 17

hw.ac.uk/ConsumerService 98 ntp from = ’hw’ AND latency = 30 25

(a) An instance of the Consumers relation.

URL connectionId tableName flags

hw.ac.uk/ProducerService 38 CECluster 1

hw.ac.uk/ProducerService 42 ntp 1

ral.ac.uk/ProducerService 74 ntp 1

hw.ac.uk/ProducerService 45 ntp 12

(b) An instance of the Producers relation.

URL connectionId tableName columnName value

hw.ac.uk/ProducerService 38 CECluster clusterId hw

hw.ac.uk/ProducerService 42 ntp from hw

hw.ac.uk/ProducerService 42 ntp tool ping

ral.ac.uk/ProducerService 74 ntp from ral

hw.ac.uk/ProducerService 45 ntp from hw

(c) An instance of the FixedStringColumns relation.

URL connectionId tableName columnName value

ral.ac.uk/ProducerService 74 ntp psize 32

(d) An instance of the FixedIntColumns relation.

URL connectionId tableName columnName value

hw.ac.uk/ProducerService 45 ntp latency 30

(e) An instance of the FixedRealColumns relation.

Table 7.1: An instance of the database used by the registry service in R-GMA.

The registration information that is stored for these components is shown in Table 7.1.

The termination periods and last contact time have been omitted as they are not

important for the discussion.

Note that the value of the flags attribute is a combination value. That is, there are

values that correspond to certain types of query support, or component type, which

can be added together to provide support for multiple query types. These base values

are provided in Table 7.2. As an example, consider the flag value of the republisher

in the Producers relation which was given as 12. This is interpreted as the producer

is part of a republisher (8) and supports history queries (4). These values added

together total 12.

The next sections will consider how the information stored by the registry service

is used to generate query plans for continuous queries and how these are maintained.
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Flag Meaning

1 Continuous

2 Latest

4 History

8 Republisher

16 Consumer

Table 7.2: The base values and their interpretation for the flags attribute.

7.2.3 Continuous Query Planning

In the r-gma system, a plan for a continuous query will only consider producers that

are not part of a republisher. This simplifies the query planning problem since there

is no redundancy in the data considered and there is no mechanism by which a loop in

the information path as detailed in Section 6.2 can occur. The fact that republishers

cannot be used also means that the query plans that are generated are simpler than

those described in Section 5.3 because there is no longer a choice in where to retrieve

information. The query plan only needs to ensure that all producers that are relevant

for the query are used to retrieve information.

Hence, the query planning tasks are

1. Identify all relevant producers for a continuous query.

2. Start streaming data from all the relevant producers.

The first of these tasks is conducted by the registry service upon receiving the regis-

tration of a new continuous query. The registry service will then pass the details of all

the relevant producers to the agent for the continuous query which will then contact

all the relevant producers with a start streaming message.

When a new continuous query is registered, it contacts the registry service to

inform it of its query over a single relation in the global schema and to retrieve the

producers that are relevant for the query. The registry service must search the stored

registration information about the components to identify those that are relevant.

This can be achieved by querying the database where the details are stored.

A producer is relevant for a continuous query if both of the following are true:

1. It publishes data for the global relation mentioned in the continuous query.
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2. The view condition of the producer and the query condition are satisfiable.

These conditions can be checked by a query to the registry database which identifies

all the producers which publish for the global relation and eliminates those which

have a contradictory view condition. A producer has a contradictory view condition

if one of the conjuncts in the view sets an attribute to a value that does not satisfy

the query. Since all the queries are conjuncts of attributes, it is sufficient to find one

attribute for which the view is contradictory.

Consider the consumer registering the global query

SELECT *

FROM ntp

WHERE from = ’hw’AND

tool = ’ping’AND

psize >= 32.

(7.10)

A producer would not be relevant if

• It published for a relation other than ntp. For example, producer 38 at hw.ac.uk

publishes for the CECluster relation.

• It has the from attribute set to a value other than ’hw’. For example, producer

74 at ral.ac.uk has this attribute set to ’ral’.

• It has the tool attribute set to a value other than ’ping’.

• It has the psize attribute set to a value less than 32.

These conditions can be tested by a sql query to the registry service database,

Query 7.11. The outer query identifies all those producers which publish for the

relation ntp. The sub-queries identify those producers which have a conjunct of a

specific type that does not satisfy the query condition. This is done for each of the

conditions in the global continuous query.
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SELECT p.URL, p.connectionId, p.flags

FROM Producers p

WHERE p.tableName = ’ntp’ AND

NOT EXISTS (SELECT *

FROM FixedStringColumns s

WHERE p.URL = s.URL AND

p.connectionId = s.connectionId AND

p.tableName = s.tableName AND

((s.columnName = ’from’ AND

s.value <> ’hw’) OR

(s.columnName = ’tool’ AND

s.value <> ’ping’)))

AND

NOT EXISTS (SELECT *

FROM FixedIntColumns i

WHERE p.URL = i.URL AND

p.connectionId = i.connectionId AND

p.tableName = i.tableName AND

((i.columnName = ’psize’ AND

i.value < 32)))

(7.11)

The result set of this query contains all the producer agents that are relevant for

the consumer query, including those producer agents which represent a republisher.

For the instance of the registry service database given in Table 7.1, the result is

given in Table 7.3. This result set contains details of producers that are part of a

republisher. Therefore, before returning the list of relevant producers to the consumer

agent, the flags are used to remove those producers that are part of a republisher. For

the example, the second entry refers to a republisher which would then be eliminated

from the result set.

When the agent of the continuous query receives the list of relevant producers,

it contacts all of them. It passes the query condition as a parameter to the start

streaming message sent to the producer agent. The producer agent, on receiving a

start streaming message, then sends those tuples which satisfy the condition of the
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URL connectionId flags

hw.ac.uk/ProducerService 42 1

hw.ac.uk/ProducerService 45 12

Table 7.3: The result of executing Query (7.11) to the registry database instance in

Table 7.1.

query to the agent of the continuous query and continues to send tuples whenever a

satisfying tuple is inserted.

7.2.4 Maintaining Continuous Query Plans

The task of maintaining query plans can be broken down into two stages. The first

stage is to detect when the publisher configuration has changed. Once a change has

been detected, the continuous queries that are potentially affected must be identified

and informed of the change.

In the r-gma implementation, there are two cases where a change in the publisher

configuration affects the query plan of a continuous query. These are:

1. Adding a new producer.

2. Removing an existing producer.

In the first case, the detection of a new producer is straightforward as the agent of

the new producer must inform the registry service of the existence of the producer.

The second case is more difficult. The system cannot simply rely on the agent of

the producer informing the registry service that it is going to stop. Since r-gma is

a distributed system, a producer could fail for a number of reasons and be unable

to send such a message. r-gma maintains the list of active producers through the

terminationTime attribute in the Producers relation. The agent of each producer is

expected to periodically send a message to the registry service to update their termi-

nationTime value so that it is always set to a time in the future. If a producer agent

fails to update the terminationTime value, this results in the value becoming a time

in the past. Before any operation is performed by the registry service, producers that

have exceeded their terminationTime, i.e. those which have a value in the past, are
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removed. Thus, the registry service is able to detect any changes to the publisher

configuration.

Note, there is no need to maintain the query plan of a continuous query when a

republisher is added to or removed from the system as these cannot be used to answer

a continuous query in the current r-gma system.

Once a change in the publisher configuration has been detected, the registry service

must then identify those continuous queries for which the change has an effect. For

simplicity, the following shall discuss the case when a producer is added to the system.

The same mechanism applies when a producer is no longer in the system. It is worth

noting that when a producer is added the affected queries must be informed of the

change as otherwise their query plans will no longer return the complete answer.

However, in the case that a producer is no longer available the affected queries are

informed in order that they may keep their query plans up to date.

When a new producer is added, the registry service must identify those queries for

which the producer is relevant. This again involves a satisfiability test between the

condition in the view of the producer and the conditions of the continuous queries.

However, it is now the query conditions that are stored by the registry service and

the view condition that is passed in.

Since the query conditions are not stored in a structured manner, the query to the

registry service database cannot perform the satisfiability test. The test for finding

relevant producers relied on the structured format of the view conditions. Thus, the

r-gma registry service poses a query to its database to identify those queries that

consume for the global relation mentioned in the view of the producer. The registry

service must then parse the condition of each of the continuous queries and perform

a satisfiability test. Again, the view condition and the query condition are satisfiable

if it is possible to make them both true, i.e. if they do not have a contradictory

condition.

Consider the addition of the producer with the view condition

σfrom=’ral’ ∧ tool=’ping’(ntp), (7.12)

which publishes data where the measurements originate at ’ral’ and are measured

with the ’ping’ tool for the ntp global relation. The query that the registry service
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URL connectionId predicate flags

con.info/ConsumerService 874 tool = ’ping’ AND psize > 24 17

hw.ac.uk/ConsumerService 98 from = ’hw’ AND latency = 30 25

Table 7.4: The result of executing Query (7.13) to the registry database instance in

Table 7.1.

would pose to its database is

SELECT URL, connectionId, predicate, flags

FROM Consumers

WHERE tableName = ′ntp′.

(7.13)

The result produced when Query (7.13) is posed to the registry database instance

given in Table 7.1 is given in Table 7.4. The query conditions of the consumers

returned would then be parsed and a satisfiability test performed on each conjunct

to identify if the new producer is relevant. The first of the consumers passes the

satisfiability test whereas the second one fails due to the contradiction in the values

for the from attribute. The consumer agent 874 at con.info/ConsumerService would

then be contacted with the details of the new producer.

When an agent for a continuous query receives a notification from the registry

service of a new relevant producer, it will contact the producer’s agent with its query

so that it can start streaming tuples from the producer. There is no need to check

whether the tuples can arrive at the consumer from another source as republishers

cannot be used to answer a continuous query and the streams of the producers are

assumed to be disjoint. Thus, all relevant producers should be added to the execution

plan for the continuous query. In the case that a producer is being removed, the

producer is removed from the list of active connections for the query.

7.3 Improving the Query Planning and Plan Main-

tenance Mechanisms

It has already been argued that the r-gma system would provide a suitable basis

for implementing the query planning and maintenance mechanisms developed in this
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thesis. The previous section gave an overview of r-gma version 4.1.11, with specific

details of how the registration information about components is stored in the reg-

istry service and the query planning and maintenance mechanisms that exist for a

continuous query. This section will now detail the extensions that were required to

implement the new query planning and maintenance mechanisms.

The main difference between the existing mechanisms and the new mechanisms is

that republishers can now be used to answer a continuous query. The consequences

of this are:

• Republishers require symmetry between the treatment of producers and con-

sumers in the registry service.

• The relevance tests are complicated by the introduction of entailment of mea-

surement attributes as detailed in Section 5.3.

• Query plans are more complicated as a choice must be made as to which pub-

lisher to contact for each part of the answer stream as discussed in Section 5.3.

• plan maintenance is more complicated as the cases where a republisher is added

to or removed from the publisher configuration must be handled as shown in

Section 6.1.

These points will now be considered in the following sections.

7.3.1 Storing the Registration Data of the Components

In Section 7.2.2, details of how the r-gma system currently stores the registration

details of consumers, producers, and republishers was presented. The language that

should be supported for a republisher query, and hence the view condition of their

producer, are conjunctions of conditions of the form

attr op value, (7.14)

where op is one of {≤, <, =, >,≥}3. However, the r-gma system is currently un-

able to represent the view condition registered by the producer component of the

3Again, the operator 6= is not supported as this is not supported in the current r-gma system.
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republisher since producer views are limited to conjunctions of conditions of the form

attr = value. (7.15)

Two approaches to storing the registration information were considered. The first

was to follow the approach used by the registry service to handle continuous queries,

i.e. to store the query as a string in the database. This requires that each lookup

to the database to retrieve details of relevant publishers, or queries, needs to parse

the string containing the view conditions and then perform the relevance test in the

registry service code. The second approach was to develop a suitable registry service

database schema by which the queries of the consumers, producers, and republishers,

can be stored in a structured manner. This approach would allow the relevance test

to be performed as part of the query to retrieve the registration information.

Implementations of both approaches with the functionality of the current r-gma

system were developed to allow experiments to be conducted into the performance of

each. Details of the tests, together with the results, are provided in Section 8.1. The

results showed that there was a significant performance gain to the registry service in

adopting the second approach whereby the query conditions are stored in a structured

manner.

The database schema for storing continuous queries in a structured manner is

presented in Figure 7.3. A side effect of the design is that the expressivity allowed for

the views of the producers is increased to that of the continuous query.

In the new schema, the Producers and Consumers relations of the r-gma reg-

istry service database have been merged into one common Components relation. This

is because the same information is being stored about consumers, producers, and

republishers. An additional attribute, componentType, was introduced to help distin-

guish between the consumers, producers, and republishers, although this could also

be achieved with the flags attribute. The FixedColumns relations are now used to store

details of both the view conditions of the publishers and the query conditions of the

continuous queries.

In order to allow ranges of numeric types additional attributes were needed in

the FixedIntColumns and FixedRealColumns relations. These attributes store, for each

bound, the type of the bound (i.e. infinite, inclusive, or exclusive) and the value of the
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Components(URL, connectionId, tableName, flags, componentType,

clientTimeStamp, terminationTime)

FixedStringColumns(URL, connectionId, tableName, columnName, value)

FixedIntColumns(URL, connectionId, tableName, columnName, lowerBoundType,

lowerBoundValue, upperBoundValue, upperBoundType)

FixedRealColumns(URL, connectionId, tableName, columnName, lowerBoundType,

lowerBoundValue, upperBoundValue, upperBoundType)

Figure 7.3: Improved registry database schema.

bound. For example, consider the following consumer, producers, and republishers

that are similar to those presented in Section 7.2.2 but which exploit the fact that

producers, and the producers of republishers, can now declare more expressive views.

• A consumer with the continuous query

σtool=’ping’ ∧ psize>24 ∧ psize≤128(ntp), (7.16)

which has an agent hosted on a suitable consumer service.

• Two producers with the view descriptions

S1 := σfrom=’hw’ ∧ tool=’ping’(ntp), (7.17)

S2 := σfrom=’ral’ ∧ psize>=32(ntp), (7.18)

where each has an agent hosted on a suitable producer service.

• The republishers with the queries

R1 := σfrom=’hw’ ∧ latency<30(ntp), (7.19)

R2 := σlatency<30(ntp), (7.20)

which both have suitable consumer and producer agents hosted on appropriate

services.
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URL connectionId tableName flags componentType

hw.ac.uk/ProducerService 42 ntp 1 Producer

ral.ac.uk/ProducerService 74 ntp 1 Producer

hw.ac.uk/ProducerService 45 ntp 13 Producer

con.info/ConsumerService 874 ntp 17 Consumer

hw.ac.uk/ConsumerService 98 ntp 25 Consumer

rep.info/ConsumerService 23 ntp 25 Consumer

rep.info/ProducerService 52 ntp 13 Producer

(a) An instance of the Components relation.

URL connectionId tableName columnName value

hw.ac.uk/ProducerService 42 ntp from hw

hw.ac.uk/ProducerService 42 ntp tool ping

ral.ac.uk/ProducerService 74 ntp from ral

hw.ac.uk/ProducerService 45 ntp from hw

con.info/ConsumerService 874 ntp tool ping

hw.ac.uk/ConsumerService 98 ntp from hw

(b) An instance of the FixedStringColumns relation.

URL connectionId tableName columnName LBT LBV UBV UBT

ral.ac.uk/ProducerService 74 ntp psize inc 32 null inf

con.info/ConsumerService 874 ntp psize non 24 128 inc

(c) An instance of the FixedIntColumns relation.

URL connectionId tableName columnName LBT LBV UBV UBT

hw.ac.uk/ProducerService 45 ntp latency inf null 30 non

hw.ac.uk/ConsumerService 98 ntp latency inf null 30 non

rep.info/ConsumerService 23 ntp latency inf null 30 non

rep.info/ProducerService 52 ntp latency inf null 30 non

(d) An instance of the FixedRealColumns relation.

Table 7.5: An instance of the database used by the improved registry service.

The registration information that is stored for these components is shown in Table 7.5.

For the purposes of presentation the abbreviations in Table 7.6 have been used. Again,

the termination periods and last contact time have been omitted as they are not

important for the discussion. The database design could also be easily extended to

allow ranges of string values.

To illustrate how the improved registry service database is populated consider the

consumer with the query given in (7.16). The details of the consumer’s agent are

stored in the Components relation, shown as the fourth row in Table 7.5(a). The con-

dition of the consumer’s query consists of three conjuncts which restrict the values of

two attributes. The tool attribute, which is a string, is restricted to the value ’ping’.

This is shown as the fifth row of the FixedStringColumns relation in Table 7.5(b).
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Bound type Meaning

LBT lowerBoundType

LBV lowerBoundValue

UBV upperBoundValue

UBT upperBoundType

(a) Boundary condition

Range type Meaning

inf infinite bound

inc inclusive bound

non exclusive bound

(b) Type of boundary condition

Table 7.6: Abbreviations used in the presentation of the improved registry database

instance.

The two conjuncts referring to the integer attribute psize restrict the values of this

attribute to the range

(24, 128], (7.21)

which has an exclusive lower bound and an inclusive upper bound. This is shown as

the second row of the FixedIntColumns relation in Table 7.5(c).

The publishers are treated in the same manner and give rise to the other rows of

the registry instance displayed in Table 7.5. Note that the republishers are each rep-

resented by two entries in the Components relation, one for the producer part and one

for the consumer part. This also results in two entries in the FixedColumns relations

as appropriate. This approach was adopted in order to minimise the alterations to

the services and agents of the r-gma system, although with the new database design

the duplication is not needed.

7.3.2 Finding Relevant Publishers

In the current r-gma system, the test for finding relevant publishers for a continuous

query only considers producers. The test is performed by a query to the registry

service database and consists of ensuring that the view of a producer and the query

condition are satisfiable. However, when republishers can be used to answer a con-

tinuous query the relevance criteria become more complex. Since there is a difference

between the relevance criteria for a consumer query and those for a republisher query

(see Section 6.2), the following discussion will first concentrate on a consumer query

before presenting the approach adopted for a republisher query.
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As stated in Lemma 5.10, a publisher P with view condition Dκ ∧ Dµ is relevant

for a consumer query with condition Cκ ∧ Cµ if both of the following hold:

1. C ∧ D is satisfiable.

2. Cµ |= Dµ.

The first criterion ensures that the publisher can potentially contribute tuples to the

answer stream of the query while the second ensures the weak order property of the

answer stream.

The first criterion requires that a satisfiability test is performed. Since the con-

ditions in the view condition can now include ranges, the satisfiability test is more

complex than that performed in the r-gma system. However, the same principle can

be applied. Namely, the view of the publisher and the query are not satisfiable if

any one of their conditions contradict, i.e. they cannot be made true by the same

tuple. For the numeric types, this means that the ranges registered for the view do

not overlap with the range required for the query. The criteria for when two intervals

are contradictory are given in Table 7.7. It is straightforward to extend the previous

query to the registry service database to cover this case, although care must be taken

to consider the data type (i.e. whether it is an integer or a real), the range boundary

type (i.e. whether it is infinite, inclusive, or exclusive), and the value.

The second criterion for relevance requires an entailment test on the measurement

attributes of the global relation. The view condition of a publisher fails the entailment

test if either of the following are true:

• It restricts a measurement attribute that the query does not.

• It has a more restrictive condition on a measurement attribute than the con-

dition in the query, e.g. the query requires a measurement attribute to be less

than 50 but the publisher restricts the attribute to be less than 30.

This test can also be conducted as a sub-query to the registry service database that

eliminates those publishers with a view condition on a measurement attribute that

is more restrictive than the query condition. This will be demonstrated through

examples.
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[a, b] (a, b] [a, b) (a, b) (−∞, b] (−∞, b) [a,∞) (a,∞) (−∞,∞)

d < a d ≤ a d < a d ≤ a

[c, d] ∨ ∨ ∨ ∨ b < c b ≤ c d < a d ≤ a

b < c b < c b ≤ c b ≤ c

d < a d ≤ a d < a d ≤ a

(c, d] ∨ ∨ ∨ ∨ b ≤ c b ≤ c d < a d ≤ a

b ≤ c b ≤ c b ≤ c b ≤ c

d ≤ a d ≤ a d ≤ a d ≤ a

[c, d) ∨ ∨ ∨ ∨ b < c b ≤ c d ≤ a d ≤ a

b < c b < c b ≤ c b ≤ c

d ≤ a d ≤ a d ≤ a d ≤ a

(c, d) ∨ ∨ ∨ ∨ b ≤ c b ≤ c d ≤ a d ≤ a

b ≤ c b ≤ c b ≤ c b ≤ c

(−∞, d] d < a d ≤ a d < a d ≤ a d < a d ≤ a

(−∞, d) d ≤ a d ≤ a d ≤ a d ≤ a d ≤ a d ≤ a

[c,∞) b < c b < c b ≤ c b ≤ c b < c b ≤ c

(c,∞) b ≤ c b ≤ c b ≤ c b ≤ c b ≤ c b ≤ c

(−∞,∞)

Table 7.7: Boundary and value criteria for when an interval a, b contradicts an interval

c, d. An inclusive boundary condition is represented with a square bracket while an

exclusive boundary condition is represented with a round bracket.
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SELECT c.URL, c.connectionId, c.flags

FROM Components c

WHERE c.componentType = ’Producer’ AND

c.tableName = ’ntp’ AND

NOT EXISTS (SELECT *

FROM FixedStringColumns s

WHERE c.URL = s.URL AND

c.connectionId = s.connectionId AND

c.tableName = s.tableName AND

((s.columnName = ’from’ AND

s.value <> ’hw’) OR

(s.columnName = ’tool’ AND

s.value <> ’ping’)))

AND

NOT EXISTS (SELECT *

FROM FixedIntColumns i

WHERE c.URL = i.URL AND

c.connectionId = i.connectionId AND

c.tableName = i.tableName AND

(i.columnName = ’psize’ AND

((i.upperBoundType = ’inclusive’ AND

i.upperBoundValue < 32) OR

(i.upperBoundType = ’exclusive’ AND

i.upperBoundValue <= 32))))

AND

NOT EXIST (SELECT *

FROM FixedRealColumns r

WHERE c.URL = r.URL AND

c.connectionId = r.connectionId AND

c.tableName = r.tableName AND

(r.columnName = ’latency’))

(7.22)
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URL connectionId flags

hw.ac.uk/ProducerService 42 1

Table 7.8: The result of executing Query (7.22) to the registry database instance in

Table 7.5.

Consider again the global Query (7.10) on Page 111. The query generated to

retrieve the relevant publishers from the new registry service database is given in

Query (7.22) on Page 123.

The first two sub-queries perform the satisfiability test with the integer test being

extended to check for the ranges of the values using the criteria from Table 7.7.

Since the condition in the query is of the form [a,∞) the eighth column gives the

criteria that the database query must check. The range values stored in the database

contradict the query condition if one of the following is true:

1. The stored upper bound type is inclusive and the value of the bound is less than

32.

2. The stored upper bound type is exclusive and the value of the bound is less

than or equal to 32.

Note that the first of these has a less than test while the second has a less than or

equal to test. This is because the boundary conditions 31] and 32) are equivalent for

integers and the satisfiability test must ensure that the stored upper bound is less

than or equivalent to 31].

The third sub-query of Query (7.22) ensures that the measurement entailment for

the single measurement attribute of ntp holds.

The result of posing Query (7.22) to the registry service database instance given

in Table 7.5 is shown in Table 7.8. The republishers that exist in the system are not

returned as they restrict the value of the measurement attribute latency.

If Query (7.22) had the additional condition that the latency must be less than 10
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seconds, i.e. it was the query

SELECT *

FROM ntp

WHERE from = ’hw’AND

tool = ’ping’AND

psize >= 32 AND

latency< 10,

(7.23)

then the republishers would also be returned as relevant publishers as the query has

a more restrictive condition on the measurement attribute than the republishers do.

The query that would be posed to the registry service database in this case is given

in Query (7.24) on Page 126.

The first two sub-queries of Query (7.22) would appear in Query (7.24) but have

been replaced by dots for the purposes of presentation. The third sub-query of

Query (7.22) has been replaced by the two sub-queries shown in Query (7.24).

The first of the sub-queries shown in Query (7.24) performs the satisfiability test

(Criterion 1 of the relevance test) applying the criteria of the seventh column of

Table 7.7. Since latency is of type Real and for the Reals the two boundary conditions

[x and (x are essentially equivalent due to the infinite nature of the domain, the test

criteria is with the value 10. However, if latency had been an integer then the test

conditions would have been:

1. The stored lower bound type is inclusive and the value of the bound is greater

than or equal to 10.

2. The stored lower bound type is exclusive and the value of the bound is greater

than or equal to 9.

The second of the sub-queries shown in Query (7.24) performs the entailment test

(Criterion 2 of the relevance test). This ensures that all of the measurement values

that the query requests can be provided by the publishers returned by the database

query. A publisher does not provide all of the measurement values for Query (7.23)

if one of the following holds:

1. The stored lower bound type is not infinite.
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SELECT c.URL, c.connectionId, c.flags

FROM Components c

WHERE c.componentType = ’Producer’ AND

c.tableName = ’ntp’ AND
...

AND

NOT EXISTS (SELECT *

FROM FixedRealColumns r

WHERE c.URL = r.URL AND

c.connectionId = r.connectionId AND

c.tableName = r.tableName AND

(r.columnName = ’latency’ AND

((r.lowerBoundType = ’inclusive’ AND

r.lowerBoundValue >= 10) OR

(r.lowerBoundType = ’exclusive’ AND

r.lowerBoundValue >= 10))))

AND

NOT EXISTS (SELECT *

FROM FixedRealColumns r

WHERE c.URL = r.URL

c.connectionId = r.connectionId AND

c.tableName = r.tableName AND

(r.columnName = ’latency’ AND

((r.lowerBoundType <> ’infinite’) OR

(r.upperBoundType = ’inclusive’ AND

r.upperBoundValue < 10) OR

(r.upperBoundType = ’exclusive’ AND

r.upperBoundValue < 10))))

(7.24)

126



Chapter 7. Implementation Details

2. The stored upper bound type is inclusive and the value is less than 10.

3. The stored upper bound type is exclusive and the value is less than 10.

The first test ensures that the lower bound of the consumer query is met while the

last two ensure the upper bound condition of the query.

Finally, the case where the continuous query, for which relevant publishers are

being sought, is part of a republisher shall be considered. In this case, as discussed

in Section 6.2, the definition of when a publisher is relevant for the query should be

replaced with that for strong relevance given in Proposition 6.5. That is, a repub-

lisher is strongly relevant for the query if it is strictly subsumed by the query. This

subsumption test is conducted by the registry service code once all the relevant pub-

lishers have been identified using the queries shown above. The approach used for the

subsumption test shall be discussed in the next section as it is central to the way in

which meta query plans and query plans are generated.

7.3.3 Constructing the Query Plan

The current r-gma system has only a rudimentary query plan in that it contacts

all of the relevant producers. When republishers are allowed to be used to answer a

continuous query, a choice must be made in the query plan as to which publishers

to use. Section 5.3 presented a mechanism for constructing a meta query plan for a

continuous query and using the meta query plan to derive a query plan. The same

method can be applied for both consumer and republisher queries since it is the

relevance criteria used that is important when planning a continuous query that is

part of a republisher. For the purposes of the discussion, the following will consider

generating a query plan for a consumer query.

In the r-gma system, when a consumer agent registers its continuous query it

receives from the registry service a list of details about relevant producers. The

details returned about each producer are the URL and the connection identifier for

the producer agent along with the value for the flags attribute. However, in order to

construct the meta query plans detailed in Section 5.3, the consumer agent needs to

be able to reason about the view conditions registered by the publishers. To facilitate

this, the interface between the registry service and the consumer agent was extended
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so that, for each of the relevant publishers, the consumer agent also receives details

of the view condition registered in a structured format.

To construct the meta query plan for a query, the consumer agent must identify

those publishers which are maximal relevant for the query and group the maximal

relevant republishers into equivalence classes. The agent first considers the relevant

republishers and constructs the equivalence classes of the maximal relevant republish-

ers. The algorithm used to construct the equivalence classes is given in Figure 7.4.

The algorithm takes as its inputs a list containing the details of the relevant

republishers and the consumer’s continuous query. The result of the algorithm is a

set of equivalence classes which contain the maximal relevant republishers for the given

query in the current publisher configuration. The algorithm assumes the existence of

certain methods.

getRepresentative(e): This method takes an equivalence class as its input and

returns the details of one of the republishers in the class.

subsumedWRT(R1, q, R2): This method takes a republisher description R1, a con-

tinuous query q, and another republisher description R2 as its inputs. It returns

true if it holds that

R1 �q R2 (7.25)

removeSubsumedClasses(R, q, eClasses): This method takes a republisher, a query,

and a set of equivalence classes as its input. It removes from the set of equiva-

lence classes those that are subsumed with respect to the query by the repub-

lisher.

eClass(R): This method takes a republisher as its input and returns an equivalence

class consisting of the republisher.

The algorithm itself iterates over the set of relevant republishers and groups them

into equivalence classes containing only the maximal relevant republishers. For each

republisher R in the set of relevant republishers R there are four cases:

1. Republisher R is equivalent to a republisher R′ that is a member of an equiv-

alence class e. This is the test conducted on line 7 of the algorithm. The
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Input: q a continuous query

R the set of relevant republishers for q

eClasses = ∅

for all R ∈ R do

found = false

for all e ∈ eClasses do

R′ = getRepresentative(e)

if subsumedWRT(R, q,R′) and subsumedWRT(R′, q, R) then

e ∪ {R }

found = true

break for

else if subsumedWRT(R, q,R′) then

found = true

break for

else if subsumedWRT(R′, q, R) then

eClasses \ { e }

removeSubsumedClasses(R, q, eClasses)

e′ = eClass(R)

eClasses ∪ { e′ }

found = true

break for

end if

end for

if found == false then

e′ = eClass(R)

eClasses ∪ { e′ }

end if

end for

return eClasses

Figure 7.4: Algorithm to generate equivalence classes of republishers.
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republisher R is added to the equivalence class e, line 8. There is no need to

compare R with any of the other equivalence classes as it can only be equivalent

to one such class.

2. Republisher R is strictly subsumed by some republisher R′ in an equivalence

class. This is the test conducted on line 11 of the algorithm. This implies

that R is not maximal relevant for q in the current publisher configuration. No

further comparisons are needed for republisher R.

3. Republisher R strictly subsumes some republisher R′ which has been put into an

equivalence class e. This is the test conducted on line 14 of the algorithm. This

means that R′ and the other members of the equivalence class e are not maxi-

mal relevant for q in the current publisher configuration. The equivalence class

e should be removed from the set of equivalence classes. Additionally, it may be

possible that R strictly subsumes w.r.t. q some of the other equivalence classes

that have been generated. These are removed with the call to removeSubsumed-

Classes on line 16. A new equivalence class is then constructed for R and added

to the set of equivalence classes, lines 17-18.

4. Republisher R is not comparable with any of the existing equivalence classes.

This case is captured in line 23 of the algorithm. In this case, republisher R is

maximal relevant for q with respect to the relevant republishers so far considered.

A new equivalence class is formed and added to the set of equivalence classes,

lines 24-25.

Note that for the first republisher considered there will not be any existing equivalence

classes and so a new equivalence class is created. It may subsequently turn out

that this republisher is not in fact maximal relevant for q in the current publisher

configuration. In this case the equivalence class would be removed by some subsequent

republisher matching case 3.

At the heart of the algorithm to generate the set of equivalence classes for a query is

the subsumption test with respect to a query. As stated in Section 5.3.2, a publisher P

with view condition σDκ ∧ Dµ(r) is subsumed with respect to a query q with condition

σCκ ∧ Cµ(r) by a republisher R with view condition σEκ ∧ Eµ(r), written P �q R, if
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and only if

Dκ ∧ Cκ |= Eκ. (7.26)

For the conditions considered, the entailment (7.26) holds if for each conjunct in Eκ

either Dκ or Cκ has an equal or more restrictive condition. This can be tested by

considering each conjunct individually. For example, republisher R1 defined in (7.19)

subsumes with respect to Query (7.23) republisher R2 defined in (7.20) since the

query restricts the attribute tool to the value ’ping’and the attribute from to the

value ’hw’. In fact, the republishers are equivalent with respect to the query.

Once the equivalence classes have been constructed they are used to identify the

maximal relevant producers for the query. A producer is maximal relevant if there does

not exist a republisher in one of the equivalence classes that subsumes with respect

to the query the producer. The same subsumption test is used, using a republisher

to represent each equivalence class.

It is straightforward to implement the rest of the query planning mechanisms

described in Section 5.3.

7.3.4 Improving the Plan Maintenance

In the r-gma system, the plan maintenance consisted of:

1. Detecting when there was a change in the producers in the system.

2. Identifying the continuous queries that are potentially affected by the change in

the producers.

3. For each affected continuous query, changing the set of active connections.

Since the information stored about the publishers and the query plans are more com-

plex in the extended system, the techniques for maintaining query plans need to be

altered.

The mechanisms implemented in r-gma for detecting a change in the publisher

configuration, see Section 7.2.4, are general. They will allow the registry service to

detect whenever there is a change in the publisher configuration, i.e. the registry ser-

vice will detect whenever a producer or republisher is added to, or removed from,
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the system. However, the extended system is required to perform maintenance oper-

ations when a republisher is added or removed as well as when a producer is added

or removed.

When the registry service detects a change in the publisher configuration, it must

identify those continuous queries for which the publisher is relevant. This can be done

in a similar way as when identifying the relevant publishers for a new query since the

registration information about continuous queries is now stored in the same way as

for publishers. However, in this case it is the continuous queries that are stored in

the registry service database and the publisher that is passed in as the parameter.

The first criterion of the relevance test can be performed in the same way, i.e. the

same satisfiability test on the conditions is performed. However, the entailment test

that checks the second criterion for relevance needs to be altered. Note that this

test only needs to be performed if the publisher is a republisher. This is because the

producers are not permitted to restrict the measurement attributes and as such will

always pass the entailment test since any condition entails true. For the case where

the change is due to a republisher, the continuous query stored in the registry service

database fails the test if either of the following is true:

1. It does not restrict a measurement attribute that is restricted in the republisher’s

query.

2. The restriction on a measurement attribute is more general than that in the

republisher’s query.

These can be tested as a sub-query to the registry service database.

For example, consider again the system configuration represented in Table 7.5 and

suppose that republisher R2 with the Query (7.20) on Page 118 is no longer available.

The query generated to identify the affected continuous query agents from the registry

service database is given in Query (7.27) on Page 133.

The first sub-query performs the satisfiability test to ensure that the continuous

queries identified have an overlapping range for the latency attribute. The satisfiability

test is the same as for when a new continuous query was registered and uses the

criteria specified in Table 7.7. Since latency is of type real, the continuous queries in
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SELECT c.URL, c.connectionId, c.flags

FROM Components c

WHERE c.componentType = ’Consumer’ AND

c.tableName = ’ntp’ AND

NOT EXISTS (SELECT *

FROM FixedRealColumns r

WHERE c.URL = r.URL AND

c.connectionId = r.connectionId AND

c.tableName = r.tableName AND

(r.columnName = ’latency’ AND

((r.lowerBoundType = ’inclusive’ AND

r.lowerBoundValue >= 30) OR

(r.lowerBoundType = ’exclusive’ AND

r.lowerBoundValue >= 30))))

AND EXISTS (SELECT *

FROM FixedRealColumns r

WHERE c.URL = r.URL

c.connectionId = r.connectionId AND

c.tableName = r.tableName AND

r.columnName = ’latency’ AND

(r.lowerBoundType = ’infinite’ AND

((r.upperBoundType = ’inclusive’ AND

r.upperBoundValue < 30) OR

(r.upperBoundType = ’exclusive’ AND

r.upperBoundValue ≤ 30))))

(7.27)
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URL connectionId flags

con.info 874 17

hw.ac.uk 98 25

Table 7.9: The result of executing Query (7.27) to the registry database instance in

Table 7.5.

the registry database do not have an overlapping condition if their lower bound value

is greater or equal to 30.

The second sub-query performs the measurement entailment test. This ensures

that all of the continuous queries returned have the same or more restrictive condition

on the measurement attribute latency. Again, care is needed with the data type

(i.e. whether it is an integer or a real), the range boundary type (i.e. whether it is

infinite, inclusive, or exclusive), and the value.

The result of posing Query (7.27) to the registry database instance given in Ta-

ble 7.5 is given in Table 7.9. The results of this query are the continuous queries

for which the republisher is relevant. However, the result should be the continuous

queries for which the republisher is strongly relevant. This requires the registry ser-

vice to perform a series of subsumption tests. For the example considered, the second

result would not pass the strong relevance test since the query is part of a republisher

and the query has a more restrictive condition as it restricts the values that the from

attribute can take.

Once the continuous query agents have been identified by the registry service, they

are each contacted and informed of the change in the publisher configuration. Upon

receiving a notification of a change in the publisher configuration, the continuous query

agent updates its list of relevant publishers. It then checks whether the publisher is

maximal relevant for its query and if it is, the agent applies the results of Chapter 6

to test whether they need to do the following:

1. Amend their meta query plans.

2. If they have altered their meta query plan, check whether their current query

plan is consistent with the new meta query plan.
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Since continuous query agents are initially informed of all relevant publishers, and

informed of any changes in the set of relevant publishers, they can maintain their

meta query plans in all the cases presented in Chapter 6 without further interaction

with the registry service. To patch their plan as required by Proposition 6.4 case 3,

the continuous query agent need only maintain a list of relevant publishers.

7.4 Switching between Query Plans

The theory presented for query planning and plan maintenance has only considered

how to create and update a meta query plan and query plan. For a production

system, when a query plan is updated there needs to be a set of protocols to switch

from the old query plan to the new plan in a controlled and well defined manner.

These protocols should ensure, as far as possible, that the resulting answer streams

are sound and complete with respect to their query, and are duplicate free and weakly

ordered. Where it is not possible to ensure these properties, the system should be

able to detect the situation and add a warning message to the result set to inform the

user of the shortcoming.

A simple approach to switch between query plans is to perform the following

actions:

• Temporarily stop all the streams affected.

• Move any state information from the existing node to the new node.

• Ensure all connections are updated.

• Start streaming again.

This approach has been implemented as a way of spreading the load across co-located

machines in the Aurora system [76]. However, this approach is not suitable in general

for a distributed stream system such as r-gma. This is because there would be

a substantial delay introduced in stopping all the streams, resulting in the system

being unable to respond to user queries.

The following is an alternative approach that ensures the four properties of an

answer stream are guaranteed or that the system detects when this is not the case.
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The proposed mechanism has not been implemented since the purpose of the im-

plementation was to show the correctness of the query planning and maintenance

mechanisms.

There are five cases when a query plan needs to be updated if there is a change

to the meta query plan. These are:

1. A producer is added to the meta query plan.

2. A producer is removed from the meta query plan.

3. A republisher is removed from the meta query plan which appears in an equiv-

alence class with other republishers and is in the query plan.

4. A republisher is added to the meta query plan which has created a new equiv-

alence class.

5. A republisher is removed from the meta query plan which was in an equivalence

class on its own.

The situations in cases 1 and 2 have already been implemented in r-gma. For

case 1, each publisher caches a published tuple for a duration defined by the publisher’s

retention period. This provides the registry service with the time needed to contact

the continuous query agents for which the producer is relevant and for them to then

contact the producer agent and start streaming. For case 2, the producer is simply

removed from the query plan.

The situation in case 3 is the one presented in the example of Section 6.1.4 when

republisher R1 is removed from publisher configuration P2. The meta query plan for

q1 in publisher configuration P2 was

Mq1(P2) =
({
{R1, R4 }

}
, ∅

)
. (7.28)

It is assumed that the query plan being used was to contact republisher R1. The

result of performing the plan maintenance means that the meta query plan for q1 in

the new publisher configuration P3 is

Mq1(P3) =
({
{R4 }

}
, ∅

)
. (7.29)
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Since q1 had been using R1 in its query plan, then it must switch to using republisher

R4.

The proposed mechanism requires that a continuous query agent maintains a

latest-state buffer where it stores the most recent tuple received on each channel.

When switching from R1 to R4, the consumer searches in its latest-state buffer for

the oldest tuple told received from R1. The consumer then requests that R4 starts

streaming from tτold, the timestamp of told. The timestamp of told is used rather than

the tuple itself as the streams are only weakly ordered, i.e. the tuples at R4 could

appear in a different order.

Upon receiving this message, R4 consults the tuples in its publishing buffer and,

providing that tτold is still within its retention period, starts streaming all tuples with

a timestamp equal to, or newer than tτold. Otherwise it will start streaming from the

oldest tuple in its buffer. On receiving the stream from R4, the consumer must filter,

on a per channel basis, the first part of the stream against its latest-state buffer. Only

once it starts receiving tuples newer than the ones in its latest-state buffer does its

answer stream start getting new tuples.

This mechanism ensures that the answers received by the consumers are sound with

respect to the query. Providing that the tuples are still within the retention periods

of the publishers involved, the answer stream will be complete. In the cases where the

stream is not complete, a bound in time can be provided on the incompleteness in the

answer stream, i.e. the time between tτold and the retention period of the republisher.

Due to the filtering based on the latest-state buffer the answer stream will be duplicate

free, and weak order is guaranteed by the construction of the query plans.

The situation in case 3 is a special case of cases 4 and 5, where all of the chan-

nels which are changing their source publisher are switching to the same new source

publisher. In cases 4 and 5 the situation is a lot more complex. However, for every

channel that is changing its data source the timestamp of the most recently seen

tuple on that channel can be sent to the new publisher. Obviously, there are some

implementation issues that need to be addressed. For example, the continuous query

agent would need to identify which publisher will be supplying which channel. This

is not necessarily a trivial task.
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7.5 Summary

This chapter has presented details of a prototype implementation of the proposed

stream integration system, and the query planning and maintenance techniques de-

veloped in this thesis. These mechanisms have been implemented as an extension

to the r-gma Grid information and monitoring system as this provided much of the

infrastructure required by a stream integration system. The implementation high-

lighted the fact that protocols will be required to manage the transition from one

query plan to another when there is a change in the publisher configuration. The

next chapter will conduct experiments to investigate aspects of the performance of

the implementation.
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Performance Measures

This chapter investigates some key aspects of the performance of the proposed stream

integration system and the associated query planning and maintenance techniques,

specifically:

1. The performance of the registry service when identifying the relevant compo-

nents for a new registration, e.g. the relevant publishers for a new continuous

query.

2. The effects of a hierarchy of publishers on the latency of an answer tuple.

These are important issues that affect the overall performance of the stream integra-

tion system and thus would affect the take-up of such a system.

The investigation into the performance of the registry service will be presented in

Section 8.1. The registry service is a key component in the stream integration system

that handles the registration of all the new producers, consumers, and republishers.

Part of this process involves identifying those registered services that are relevant for

the new producer, consumer, or republisher. The performance of the registry service

is of great importance as delays would affect the entire stream integration system.

The experiments investigate the two approaches, detailed in Chapter 7, to the task

of identifying relevant consumers for the registration of a new publisher.

Section 8.2 investigates the effects of introducing a hierarchy of publishers on the

latency of an answer tuple. It is expected that the introduction of the hierarchy will

increase the time taken for a tuple to be delivered to a consumer since it must pass

through some number of republishers en route. However, there are benefits to using
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a hierarchy of publishers, e.g. a continuous query need not contact every producer of

relevant information. The second set of experiments aims to quantify the effect of

the hierarchy of publishers on the latency of an answer tuple and will investigate the

effect of introducing more than one level of republishers on the time taken.

All of the tests were carried out on up to six identical machines running Fedora

Core 2. Each machine had a 1.4GHz Intel Pentium 4 processor with 256KB of Cache,

256MB of RAM, and connected by a 100Mbps LAN. Tomcat version 5.0.28 was used

together with Sun’s Java 1.4.2 version 8.

8.1 Performance of the Registry Service

The registry service is a key component of the stream integration system proposed in

Chapter 4 and as such its performance will have a large impact on the system as a

whole. Four closely related tasks that the registry service performs on a regular basis

are:

1. Identifying relevant consumers and republishers when a new publisher registers.

2. Identifying relevant consumers and republishers when an existing publisher is

removed from the system.

3. Identifying relevant publishers when a new consumer or republisher registers.

4. Identifying relevant publishers when an existing consumer or republisher is re-

moved from the system.

Each of these tasks involves performing tests on the registered producers, consumers,

and republishers, as appropriate. For the Grid information and monitoring application

this will involve a large number of tests. Thus, the registry service needs an efficient

method to perform these relevance tests.

As discussed in Section 7.2, the current r-gma system has two approaches to the

relevance test depending on whether it is identifying publishers or continuous queries.

The first approach, used when identifying relevant producers for a query, is to generate

a query that retrieves the relevant producers from the registry service database, i.e. the

query to the registry database performs the relevance test. The second approach,

140



Chapter 8. Performance Measures

used when identifying relevant continuous queries, is to retrieve all continuous queries

that involve the same global relation from the registry service database and perform

the relevance test in the registry service code. However, when republishers can be

used to answer a continuous query, the techniques to handle continuous queries and

publishers needs to be consistent. Thus, performance measures were conducted to

investigate which of the approaches is more efficient and should be adopted for the

implementation of the query planning mechanisms developed in this thesis.

It is worth noting that the experiments were performed before republishers were

permitted to answer a continuous query. Thus, the relevance test only checked the

satisfiability of the view and query conditions.

8.1.1 Experimental Method

The two approaches to performing the relevance test were investigated for the case of

identifying relevant continuous queries for a new producer. The tests would measure

the time taken by the two approaches to identify all the relevant continuous queries.

The first approach considered involves retrieving all of the consumers from the

registry service database that have a query which involves the relation in the view of

the producer and then performing the satisfiability test in the registry service. This is

the method implemented in the current r-gma system, so the existing registry service

could be used for the experiments.

The r-gma registry service has an efficient implementation of the satisfiability

test, the test does not necessarily need to compare every pair of conjuncts in the

view of the producer and the query of the consumer. As soon as one attribute is

found to be unsatisfiable the consumer is discarded and the next one is considered.

Similarly, if either the query of the consumer or the view of the producer does not

have a condition then the test will return true immediately as any query condition

considered is satisfiable with the true condition.

The experiments conducted measure the time taken by the r-gma registry service

to perform the following tasks:

1. Generate the query to the registry service database to retrieve all the consumers

for the global relation named in the view of the producer.
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2. Pose the generated query to database.

3. Parse the condition of each consumer returned by the registry database query

and perform the satisfiability test.

The second approach considered involves performing the satisfiability test as part

of the query posed to the registry service database. This required the development of

an extension to the registry service, referred to as r-gma′, which used a database that

stores the conditions in the query of the consumer in a structured format. Full details

of the database schema used can be found in Section 7.3.1. The r-gma′ registry

service would then generate a suitable query to perform the satisfiability test when a

new producer registered.

The experiments conducted measure the time taken by the r-gma′ registry service

to perform the following tasks:

1. Generate the query to the registry service database that would retrieve the

consumers that are relevant to the producer, i.e. the query would perform the

satisfiability test.

2. Pose the generated query to the database.

8.1.2 Experimental Setup

The experiments to measure the performance of the two registry services were run

on four machines. The machines were configured so that one machine acted as the

schema service, one machine as the registry service, one machine as a consumer service

which also hosted all the consumers, and one machine as a producer service which

also hosted the producers.

The tests were conducted by annotating the code of each registry service so that

it would write a timestamped log message before entering the method to identify the

relevant consumers and a similar message once the method had completed. The time

taken to perform the relevance test was the difference between the timestamps.

To conduct the experiments, the global schema was extended to include the new

142



Chapter 8. Performance Measures

relation

regTest(hostname :: string, testColumn1 :: string, testColumn2 :: integer,

testColumn3 :: real, testColumn4 :: string, . . . ,

testColumni, . . . , testColumn19 :: string), (8.1)

where the type of each attribute is given and testColumni for i ∈ 4..19 had the type

string. This relation allowed query and view conditions to involve many attributes.

Three sets of experiments were conducted to investigate the time taken to find the

relevant consumers for a new producer under different experimental conditions. The

different conditions considered were:

1. All of the consumers in the system are relevant for the new producer.

2. None of the consumers in the system are relevant for the new producer.

3. A mixture of relevant and non-relevant consumers for the new producer exist in

the system.

The first two cases provide extreme cases for the experiment and will provide upper

and lower bounds for the performance of the registry services. The third case matches

the normal situation where some of the consumers will be relevant for a new producer

and others will not.

For each run of the experiment, 50 consumers were instantiated. Once all of

the consumers had registered with the registry service, 10 producers were added to

the system one at a time with the average of the time taken to add a producer

recorded. This was repeated multiple times for each of the different experimental

conditions varying the number of conditions in the producer view and the consumer

query respectively, each varying from 0 conditions to 10 conditions. Varying the

number of conditions alters the amount of work that has to be conducted to perform

the satisfiability test.

Another way of increasing the amount of work performed by the satisfiability test

is to increase the number of consumers. Thus, the experiment was repeated with 100

consumers, all of which were relevant for the new producers added.
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In all of the experiments, the producers registered the same view. The view was

constructed from the following 10 conditions:

testColumn1 = ’constant’ ∧ testColumn2 = 25 ∧ testColumn3 = 5.0 ∧

testColumn4 = ’xxx’ ∧ testColumn5 = ’yyy’ ∧ testColumn6 = ’zzz’ ∧

testColumn7 = ’aaa’ ∧ testColumn8 = ’bbb’ ∧

testColumn9 = ’ccc’ ∧ testColumn10 = ’ddd’. (8.2)

Each of the conditions was added in turn, so when the producers registered a view

with four conditions they registered the view:

testColumn1 = ’constant’ ∧ testColumn2 = 25 ∧

testColumn3 = 5.0 ∧ testColumn4 = ’xxx’. (8.3)

The queries of the consumers for each of the experiments will be given in the relevant

results section below.

8.1.3 Results

The following sections present the results of running the experiments for each of the

experimental conditions in turn.

Experiment with 50 Relevant Consumers

The 10 query conditions for the relevant consumers were:

testColumn1 = ’constant’ ∧ testColumn2 ≤ 50 ∧ testColumn3 < 10.5 ∧

testColumn2 > 0 ∧ testColumn4 = ’xxx’ ∧ testColumn5 = ’yyy’ ∧

testColumn3 ≥ 2.5 ∧ testColumn6 = ’zzz’ ∧

testColumn7 = ’aaa’ ∧ testColumn8 = ’bbb’. (8.4)

Again, the query with 1 condition consists of the first condition, the query with 2

conditions the first two, and so on.

Figures 8.1 and 8.2 present the results for the experiments when there are 50

relevant consumers for the new producers being added. The results show that the

r-gma′ registry service significantly outperforms the r-gma registry service.

144



Chapter 8. Performance Measures

 0

 50

 100

 150

 200

 250

 300

 0  2  4  6  8  10

Ti
m

e 
to

 a
dd

 a
 P

ro
du

ce
r (

m
s)

Number of Fixed Columns in Producer View

50 Relevant Consumers: No Consumer Predicate

R-GMA
R-GMA Prime

(a) No consumer predicate.
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(b) One consumer predicate.
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(c) Two consumer predicates.
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(d) Three consumer predicates.
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(e) Four consumer predicates.
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(f) Five consumer predicates.

Figure 8.1: Time taken to identify relevant consumers for a new producer when there

are 50 registered consumers, all of which are relevant.
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(a) Six consumer predicates.
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(b) Seven consumer predicates.
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(c) Eight consumer predicates.
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(d) Nine consumer predicates.

 0

 50

 100

 150

 200

 250

 300

 0  2  4  6  8  10

Ti
m

e 
to

 a
dd

 a
 P

ro
du

ce
r (

m
s)

Number of Fixed Columns in Producer View

50 Relevant Consumers: Ten Query Conditions

R-GMA
R-GMA Prime

(e) Ten consumer predicates.

Figure 8.2: Time taken to identify relevant consumers for a new producer when there

are 50 registered consumers, all of which are relevant.
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Number of

query conditions

r-gma r-gma′

Average Variance Average Variance

0 49.8 35.4 22.2 4.6

1 65.5 21.6 21.7 5.4

2 92.9 32.4 23.7 6.6

3 102.0 35.7 24.4 6.3

4 109.0 37.1 24.2 6.9

5 122.9 44.3 25.2 7.2

6 127.4 45.7 25.9 7.1

7 152.6 55.3 25.8 7.4

8 155.2 56.5 26.2 7.9

9 165.2 62.6 26.2 8.2

10 189.1 79.0 27.0 8.4

Table 8.1: The mean and variance for 50 relevant consumers.

In all of the graphs, the r-gma′ registry service shows near constant performance

of between 20 and 30ms. It is more difficult to characterise the performance of the

r-gma registry service due to the variability in its performance. The average and

variance of the plots are given in Table 8.1 and are also shown in Figure 8.12(a). The

average values for the r-gma′ registry service support the claim that it shows near

constant performance, although there is a slight increase in the time taken as the

number of conditions in the queries of the consumers increase. The average values

for r-gma registry service show that as the number of conditions increases, the time

taken to identify the relevant consumers increases significantly.

The performance of the two registry services is most similar in the case where the

consumers have no predicate, Figure 8.1(a). In this case, the r-gma registry service

can exploit an optimisation in the satisfiability test used to check relevance; when

testing any condition against no predicate the result is always true. Thus, once the

registry service has ascertained that the consumer’s query does not contain a predicate

it need not perform a satisfiability test. Even in this case, the r-gma′ registry service

is about twice as fast as that of the r-gma registry service. This is because the r-gma

registry service must process each consumer to check it has no predicate whereas the
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r-gma′ registry service can simply return the result set from the database query.

A common feature of the r-gma registry service performance, that occurs in all

of the graphs, is that it takes longer to process a producer registering a view with one

condition than it does with two. This is most prominently shown in Figure 8.1(a).

Experiment with 50 Non-relevant Consumers

The 10 query conditions for the non-relevant consumers were:

testColumn1 = ’const’ ∧ testColumn2 > 50 ∧ testColumn3 ≥ 10.5 ∧

testColumn2 ≤ 100 ∧ testColumn4 = ’aaa’ ∧ testColumn5 = ’bbb’ ∧

testColumn3 < 25.5 ∧ testColumn6 = ’ccc’ ∧

testColumn7 = ’ddd’ ∧ testColumn8 = ’eee’. (8.5)

Again, the query with 1 condition consists of the first condition, the query with 2

conditions the first two, and so on.

Figures 8.3 and 8.4 present the results for the experiments when there are 50 non-

relevant consumers for the new producers being added. Again, the results show that

the r-gma′ registry service outperforms the r-gma registry service. The following

are thought to be anomalous readings:

• Figure 8.3(a) the r-gma registry service with 7 conditions in the views of the

producers.

• Figure 8.3(a) the r-gma′ registry service with 8 conditions in the views of the

producers.

• Figure 8.4(e) the r-gma registry service with 7 conditions in the views of the

producers.

The average and variance of the plots are given in Table 8.2 and are also shown

in Figure 8.7(a). For the r-gma′ registry service, these show that after the case

where neither the producer nor the consumer has any predicate, the performance is

almost steady at 14ms. For the r-gma registry service, after the initial case, as

the number of conditions increases the time taken to identify the relevant consumers

increases. This increase is despite the optimisation in the satisfiability test whereby
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(a) No Consumer predicate.
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(b) One condition.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10

Ti
m

e 
to

 a
dd

 a
 P

ro
du

ce
r (

m
s)

Number of Fixed Columns in Producer View

50 Non-relevant Consumers: Two Query Conditions

R-GMA
R-GMA Prime

(c) Two conditions.
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(d) Three conditions.
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(e) Four conditions.
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(f) Five conditions.

Figure 8.3: Results from registry service performance test with 50 non-relevant con-

sumers.
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(a) Six conditions.
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(b) Seven conditions.
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(c) Eight conditions.
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(d) Nine conditions.
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(e) Ten conditions.

Figure 8.4: Results from registry service performance test with 50 non-relevant con-

sumers.
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Number of

query conditions

r-gma r-gma′

Average Variance Average Variance

0 50.4 35.8 24.8 11.1

1 43.7 22.9 14.5 3.3

2 49.2 29.1 14.4 3.6

3 51.0 26.6 14.2 3.4

4 53.0 25.2 16.0 8.3

5 59.0 26.2 14.2 4.0

6 61.6 31.8 14.2 3.4

7 62.9 29.7 14.4 3.5

8 63.6 28.3 14.1 3.5

9 66.4 26.7 14.2 3.7

10 70.8 27.3 14.5 3.9

Table 8.2: The mean and variance for 50 non-relevant consumers.

when one condition is found to be contradictory the entire test fails. However, it

can be explained since as the number of conditions in the queries of the consumers

increases the longer it will take to parse the query expression before performing the

satisfiability test.

The characteristic feature of the graphs for the r-gma registry service is the spike

on the left hand side which peaks when the views of the producers have either one

or two conditions. The graphs then slope down and when the views of the producers

have four conditions have levelled off, although the value at which the graphs level off

increases as the number of conditions in the queries of the consumers increases.

Since the spike at the start of the r-gma registry service was more prominent

under these experimental conditions it was decided to further investigate this feature.

To understand whether the spike was caused by setting up the experiment or was a

feature of the results, the experiment was run in reverse, i.e. first of all the producers

with 10 conditions in their view were added, then 9, and so on until they had no

conditions in their view. The results for these experiments are presented in Figures 8.5

and 8.6.

The following are believed anomalous readings:
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(a) No Consumer predicate.
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(b) One condition.
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(c) Two conditions.

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

Ti
m

e 
to

 a
dd

 a
 P

ro
du

ce
r (

m
s)

Number of Fixed Columns in Producer View

50 Non-Relevant Consumers: Three Query Conditions

R-GMA
R-GMA Prime

(d) Three conditions.
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(e) Four conditions.
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(f) Five conditions.

Figure 8.5: Results from registry service performance test with 50 non-relevant con-

sumers, producers added in reverse, i.e. 10 conditions looping down to 0 conditions.
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(a) Six conditions.

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

Ti
m

e 
to

 a
dd

 a
 P

ro
du

ce
r (

m
s)

Number of Fixed Columns in Producer View

50 Non-Relevant Consumers: Seven Query Conditions

R-GMA
R-GMA Prime

(b) Seven conditions.
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(c) Eight conditions.
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(d) Nine conditions.
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(e) Ten conditions.

Figure 8.6: Results from registry service performance test with 50 non-relevant con-

sumers, producers added in reverse, i.e. 10 conditions looping down to 0 conditions.
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Number of

query conditions

r-gma r-gma′

Average Variance Average Variance

0 45.3 21.3 24.9 10.1

1 36.1 9.7 13.5 2.7

2 41.8 13.4 13.4 2.5

3 41.9 11.5 12.8 2.6

4 44.6 12.3 12.6 2.5

5 47.9 13.0 12.7 2.9

6 50.4 14.2 13.1 2.6

7 55.5 17.5 12.6 2.7

8 58.0 18.0 12.9 3.1

9 58.0 16.9 12.9 2.7

10 61.0 17.7 13.4 2.8

Table 8.3: The mean and variance for 50 non-relevant consumers run in reverse.

• Figure 8.5(a) shows erratic behaviour throughout.

• Figure 8.5(c) the r-gma registry service when the views had 5 conditions.

• Figure 8.6(b) the r-gma registry service when the views had 9 conditions.

• Figure 8.6(c) the r-gma registry service when the views had 3 conditions.

The spike that was characteristic of running the experiments with an increasing

number of conditions is not present when the experiment was reversed. Since the

spikes are not present when the view has one or two fixed conditions, it is believed

that the spikes are not related to the time taken to perform the relevance test. It is

likely that the spikes are caused by the registry service performing some background

operation, e.g. the soft-state registration mechanism.

The average and variance of the plots are given in Table 8.3 and are shown in

Figure 8.7(a). It is interesting to look at the results for the two runs with 50 non-

relevant consumers when the outlying values are removed from the data. These are

shown in Figure 8.7(b). Note that the performance of the r-gma registry service in

the two runs is almost identical.
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(a) Average time taken to add a producer when all of the consumers are not

relevant.

(b) Smoothed average time taken to add a producer when all of the consumers are

not relevant.

Figure 8.7: Graphs showing the average time taken to add producers when there are

50 non-relevant consumers.
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Experiment with 50 Consumers of Mixed Relevance

The experiments involving 50 consumers of mixed relevance used four different sets

of queries. Twelve of the consumers registered the query drawn from the conditions

in (8.4) that was always relevant for the producers. Twelve of the consumers regis-

tered the query drawn from the conditions in (8.5) that was always not relevant for

the producers, except for the case where the consumer has no predicate. Thirteen

registered a query drawn from the following 10 conditions, which were relevant for

some of the time:

testColumn1 = ’constant’ ∧ testColumn2 ≥ 25 ∧ testColumn3 ≤ 66.7 ∧

testColumn2 < 50 ∧ testColumn8 = ’bbb’ ∧ testColumn3 > 0.0 ∧

testColumn6 = ’lll’ ∧ testColumn4 = ’xxx’ ∧

testColumn9 = ’aaa’ ∧ testColumn7 = ’bbb’. (8.6)

The final thirteen registered a query made from the following 10 conditions, which

were relevant for some of the time:

testColumn2 > 20 ∧ testColumn3 < 33.3 ∧ testColumn4 = ’xxx’ ∧

testColumn5 = ’yyy’ ∧ testColumn8 = ’eee’ ∧ testColumn6 = ’zzz’ ∧

testColumn9 = ’ddd’ ∧ testColumn2 ≤ 30 ∧

testColumn10 = ’www’ ∧ testColumn3 ≥ 5.0. (8.7)

Figures 8.8 and 8.9 present the results for these experiments. Again, the results show

that r-gma′ registry service outperforms the r-gma registry service.

The r-gma′ registry service shows almost constant performance. The performance

of the r-gma registry service is more difficult to characterise. However, generally

the r-gma registry service took longer to identify the relevant consumers in the

first few cases, where the producers only have a few conditions, and then the time

taken dropped. In the cases where the consumers have five or more conditions, this

drops to almost constant performance, although the point at which this occurs varies.

These results are not unexpected. In the first few cases the performance is similar

to the experiments where there were 50 relevant consumers. Once the performance

starts to drop to a constant value, this mirrors the case when there are 50 non-

relevant consumers. An analysis of the query and view conditions shows that the
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(a) No consumer predicate.
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(b) One condition.
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(c) Two conditions.
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(d) Three conditions.
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(e) Four conditions.
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(f) Five conditions.

Figure 8.8: Results from registry service performance test with 50 consumers of mixed

relevance.
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(a) Six conditions.
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(b) Seven conditions.
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(c) Eight conditions.
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(d) Nine conditions.
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(e) Ten conditions.

Figure 8.9: Results from registry service performance test with 50 consumers of mixed

relevance.
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Number of

query conditions

r-gma r-gma′

Average Variance Average Variance

0 49.2 30.1 20.8 4.4

1 67.1 23.3 20.9 4.8

2 82.7 26.1 22.4 6.0

3 97.3 32.6 22.9 6.5

4 102.0 33.5 22.4 6.4

5 99.8 38.8 22.0 6.0

6 96.6 41.5 21.7 5.9

7 91.0 46.9 22.0 5.9

8 94.8 45.6 21.8 5.7

9 97.8 48.3 21.3 5.9

10 109.7 53.3 21.3 5.9

Table 8.4: The mean and variance for 50 consumers with a mixture of queries.

point at which the performance characteristics change is dependent on when each

of the Queries (8.6) and (8.7) stop being relevant for the views of the producers.

For example, the conditions in Query (8.6) when compared with the view conditions

means that the thirteen consumers registering their query based on this query will no

longer be relevant when they register seven conditions. This is because the condition

testColumn6 = ’lll’ ∧ testColumn6 = ’zzz’, (8.8)

is not satisfiable. In Figure 8.9(b) this is shown by the levelling out of the graph when

there are six conditions in the view of the producers.

The average and variance of the plots are given in Table 8.4 and are shown in

Figure 8.12(b).

Experiment with 100 Relevant Consumers

The conditions used for the consumers in this experiment were the same as those for

the 50 relevant consumers given in (8.4). Figures 8.10 and 8.11 present the results for

these experiments.

The results are broadly similar to those for the case when there were 50 relevant
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(a) No consumer predicate.
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(b) One condition.
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(c) Two conditions.
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(d) Three conditions.
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(e) Four conditions.
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(f) Five conditions.

Figure 8.10: Results from registry service performance test with 100 relevant con-

sumers.
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(a) Six conditions.
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(b) Seven conditions.
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(c) Eight conditions.
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(d) Nine conditions.
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(e) Ten conditions.

Figure 8.11: Results from registry service performance test with 100 relevant con-

sumers.
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Number of

query conditions

r-gma r-gma′

Average Variance Average Variance

0 84.2 28.1 27.4 4.9

1 152.7 55.0 29.1 7.0

2 187.2 66.8 29.9 7.7

3 218.6 85.3 33.5 9.5

4 232.0 85.2 34.9 9.6

5 258.9 95.3 34.9 10.9

6 285.7 112.7 38.5 10.7

7 302.2 116.0 37.4 11.1

8 311.0 113.9 37.6 12.0

9 334.7 130.6 40.4 12.3

10 353.0 126.8 38.7 13.1

Table 8.5: The mean and variance for 100 relevant consumers.

consumers, although there is more variability in the results. The results show that

the time taken by the r-gma′ registry service to perform the relevance test increases

slightly as the number of conditions in the views of the producers increases, although

the overall performance is still near constant. For the r-gma registry service there

was a lot of variability in the performance but the trend is an increase in the time

taken as the number of conditions increases.

The average and variance of the plots are given in Table 8.5 and are shown in

Figure 8.12(a).

8.1.4 Discussion

Overall the results show that there is a significant advantage in storing the queries of

consumers in a structured manner in a database and to perform the relevance test as

an sql query. A comparison of the average time taken by the registry services for the

cases when there are 50 and 100 relevant consumers is presented in Figure 8.12(a),

and shows that for both registries there is an increase in the time taken. For the

r-gma′ registry service this increase is only between 5 and 15ms, whereas for the

r-gma registry service the performance for 100 consumers is about twice that for 50
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(a) Average time taken to add a producer when all of the consumers are relevant.

(b) Average time taken to add a producer when there are 50 consumers registered.

Figure 8.12: Graphs showing the average time taken to add a producer as the number

of conditions in the queries increases.
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consumers.

This dramatic improvement in the performance can be accounted for by the fact

that the r-gma registry service must parse each consumer query before performing

the satisfiability test whereas the improved registry service r-gma′ can exploit the

structured representation of the query condition in the registry service database.

It should be noted that the results for the r-gma′ registry service did not include

the time taken to initially parse and store the queries of the consumers when they

were first registered. However, the additional time taken for this process is only that

required to store the conditions in the database since the current r-gma registry

service must already parse the query to check that it is a permissible continuous

query, i.e. it is a valid selection query over one of the tables in the schema. Thus, the

additional time taken is only that of generating and executing a handful of sql insert

statements.

It was claimed in Section 8.1.2 that the three experimental conditions involving

50 consumers would model the performance for the best-case, worst-case, and an

approximation of the normal-case. The averages for these experiments are presented

in Figure 8.12(b) and clearly show that the results for the experiment involving 50

mixed consumers lie between the other two experimental conditions. Notice that

for both registry services the experiment involving 50 mixed consumers begins by

resembling the performance for when all the consumers are relevant and then as the

number of query conditions increases more closely resembles the performance for the

experiment when all of the consumers are not relevant. This feature is likely to be

caused by the choice of query conditions for the consumers in the experiment.

Most of the experiments showed a spike at the start of each run, e.g. Figure 8.3(b).

A possible cause for the spike could be the effect of the MySQL database manage-

ment system making use of a data cache. The effects of this were not investigated.

Firstly, this is because any such cache would affect each registry service. Secondly,

the purpose for conducting the experiments was to investigate which registry service

was more efficient. All of the results show that the r-gma′ registry service approach

of using a structured representation significantly outperformed the r-gma registry

service approach of storing the consumer conditions as a string.

There are a number of other advantages in using a structured representation for
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the queries of the consumers. Firstly, there would no longer be a limit on the length of

the WHERE clause in the query. This limit has not yet been reached in the deployment

of the r-gma system but currently the predicate can only be 255 characters long1.

Secondly, it allows for more code reuse in the implementation of the registry ser-

vice. In the current r-gma implementation, there are separate methods for handling

the views of the producers and the queries of the consumers. By storing the informa-

tion about both producers and consumers in the same way, common methods can be

used to process the information. Similarly, when performing the relevance test, the

same code can be used to generate the sub-queries that perform the satisfiability test,

see Section 7.3.2.

Finally, it allows republishers to pose arbitrary selection queries rather than being

limited to the views that producers can register, since a common approach can be

followed for storing their details. This is necessary if republishers are to be used for

answering continuous queries and hence the creation of hierarchies of publishers.

8.2 Effects of a Publisher Hierarchy

The second set of experiments performed for this thesis investigated the effects of

a hierarchy of publishers on the latency of an answer tuple. The republishers were

introduced to allow continuous queries to be answered more efficiently since the con-

sumer need not contact as many publishers. This should also allow the system to

scale to large numbers of producers and consumers. However, the republishers will

increase the time taken for a tuple to reach a consumer. This is because the tuple

must travel from the producer that publishes it, through some number of republishers

before reaching the consumer.

The experiment is designed to quantify the time taken by a republisher to receive a

tuple and then make it available in the answer stream. It will also investigate whether

there is a linear growth in the latency with additional levels of a publisher hierarchy.

1For the experiments the r-gma registry service database was altered to allow queries with longer

predicates to be stored by changing the data type to a text field.
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8.2.1 Experimental Method

The experiment was run over the extension of the r-gma system presented in Sec-

tion 7.3. The experiment consisted of a producer which publishes a set number of

tuples each containing the current time in milliseconds. Between publishing tuples,

the producer waited 10ms. The consumer, upon receiving a result set of tuples, would

add a line to the result file for each tuple in the result set containing the time at which

the result set was received, in milliseconds, and the time at which the tuple was pub-

lished. After the experiment was run, the result file was processed so that the time

at which the tuple arrived at the consumer was compared against the time when it

was published. The difference in these times would be the time taken to deliver the

tuple.

8.2.2 Experimental Setup

The experiments were run on six machines, each of which was installed with the

extended version of r-gma. The machines were configured so that one machine acted

as both the registry service and schema service. One machine acted as both the

producer service and the producer publishing the tuples. Another machine acted as

both the consumer service and the consumer. Three machines were used to host one

republisher each along with the appropriate services.

The experiment was initially conducted with no republisher. This would provide

the latency of sending a tuple directly from the producer to the consumer. The

experiment was then run with one republisher which consumed from the producer

and streamed to the consumer. The next experiment used two republishers with

one republisher feeding the other. The final experiment consisted of three levels of

republishers between the producer and consumer.

In all of the experiments 10,000 identical tuples, except for the current time, were

inserted by the producer. Each experiment was repeated three times and the results

averaged.
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Figure 8.13: Time taken to deliver tuples from the producer to the consumer using

different numbers of republishers.

8.2.3 Results

The results for the experiment are presented in Figure 8.13. The experiments clearly

show that the time to deliver a tuple directly from the producer to the consumer is

constant and takes a few milliseconds. For the republishers, there is an interesting

saw-tooth function shape to the graphs. The average time to deliver a tuple in each

of the experiments, along with the variance, is shown in Table 8.6.

The saw-tooth function shape to the graphs involving republishers can be ex-

plained by some understanding of the implementation of the republishers. A repub-

lisher consists of two separate r-gma components, each with their own agent:

1. A consumer which poses the republisher’s query and retrieves the answer stream

from the relevant publishers in the query plan, and

2. A producer which publishes the resulting answer stream in the system.

When a republisher is created, it waits 10 seconds before collecting any tuples from its

consumer agent. This means that it receives a block of all the tuples so far streamed

to the consumer agent. These are then inserted into the republisher’s producer as a
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Number of Republishers Average time to deliver a tuple (ms) Variance

0 26 10

1 15085 9673

2 35300 9947

3 57270 10141

Table 8.6: Average time and variance to deliver a tuple using different numbers of

republishers.

block of tuples. The republisher then “sleeps” for 30 seconds before contacting its

consumer agent for any new tuples. Thus, the republisher adds up to a 30 second

delay to the latency for a tuple and groups tuples up into blocks.

The peak values of the saw-tooth feature, together with the tuple number at

which it occurs, are given in Table 8.7. For one republisher the peak value is roughly

constant. For two republishers the peak value decreases gradually and for three repub-

lishers the peak value decreases at a faster rate. However, it is likely that the peaks of

the saw-tooth function are dependent on the synchronisation between a republisher

polling its consumer agent and the rate of publication of tuples by the publisher from

which it consumes.

An interesting feature of the graph for one republisher in Figure 8.13 is the small

peak that occurs before the time taken to deliver a tuple reaches its lowest value in

each of the saw-tooth features. This small peak is likely to be caused by the following

sequence of events:

1. The republisher awakes and polls its input queue and discovers that it contains

tuples.

2. The republisher processes the tuples on its input queue.

3. The republisher polls its input queue. If the queue is not empty then repeat

step 2, otherwise sleep 30 seconds and repeat step 1.

In the first step, the republisher will have been asleep for some period of time which

leads to a build-up of tuples on its input queue. When it awakes it purges this queue

and processes the tuples which takes time but not as long as it was asleep for. When
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Tuple Number One Republisher Two Republishers Three Republishers

210 33413.33

734 56316

1267 78484.33

2613 32791.33

3148 53856.67

3773 75968.67

5229 32698.33

5724 52286

6378 74125.67

7817 32740

8253 49908

8937 70476

Table 8.7: Peak values for the republishers.

it re-polls its queue there is a smaller number of tuples. This repeats until there are

eventually no tuples to process since it takes time to insert a tuple and the producer

is only publishing every 10ms. The republisher then sleeps for 30 seconds and repeats

the process.

The graphs representing the runs with two and three republishers do not show

this small spike feature. This is because the small spike feature is caused by the syn-

chronisation between the producer which has a 10ms sleep period and the republisher

which has a 30 s sleep period. However, it is possible that when there are two or more

republishers that a suitable synchronisation could result.

Consider the case of two republishers R1 and R2, where R1 consumers from the

producer and R2 consumes from R1. Republisher R1 will go through the sequence

of events outlined above. The graphs in Figure 8.13 show the case where R2 wakes

when R1 has recently entered a sleep 30 s phase. This means that no tuples arrive at

the consumer agent of R2 whilst it is processing the tuples that have arrived at its

consumer agent whilst it was sleeping. Thus, R2 goes straight into a sleep 30 s phase.

However, if R2 started processing its tuples when R1 was in a small spike phase then

tuples would arrive at the consumer agent of R2 and when it finished processing its
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Number of Republishers Average time to deliver a tuple (ms) Variance

0 527 236

1 15462 9631

2 35572 10107

3 57213 10135

Table 8.8: Average time and variance to deliver a tuple using different numbers of

republishers when the producer introduces no delay between inserting each tuple.

initial batch of tuples there would be more for it to process. This would result in a

small spike in the graph with two republishers, although it is highly dependent on the

synchronisation of all of the sleep periods.

The average values in Table 8.6 show that one level of republishers introduces

a delay of 15 seconds, a second level of republishers adds 20 seconds to the delay,

and the third level adds another 22 seconds to the delay. The same experiment was

also conducted with the producer adding no delay between inserting each tuple. The

results for this experiment are shown in Figure 8.14. The graphs in Figure 8.14 show

the same characteristics as the graphs in Figure 8.13. The average values for this run

are shown in Table 8.8. Note that the average values are similar to those in Table 8.6,

except for the case where there is no republisher which has a large variance value

in Table 8.8. This shows that the synchronisation between the publishers is stable.

However, in both experimental runs the republishers were created one after the other

and, since the dominant delay is from the republisher sleep period, are likely to

show the same synchronisation patterns between their sleep periods. An experiment

where the republishers were not started one after the other or where the each of the

republishers slept for different amounts of time could show different average delay

times.

Currently, the delay of 30 seconds is hard coded into the r-gma republisher.

However, there have been requests from users of the r-gma system that the delay

should become a configurable parameter. It is anticipated for a future release of

r-gma that the administrators of the republishers will be able configure the delay

between each round of polling. Thus, the experiments were repeated but with the

republisher introducing no delay, i.e. the republisher continuously polls its agent for
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Figure 8.14: Time taken to deliver tuples from the producer to the consumer using

different numbers of republishers when the producer introduces no delay between

inserting each tuple.

new tuples without any delay between polls.

Figure 8.15 and Table 8.9 present the results when the republishers did not wait

between each round of polling for tuples. The graph clearly shows that the introduc-

tion of each level of republisher increases the throughput time of a tuple. However,

these graphs show more constant performance since the republishers are no longer

introducing a delay.

The average delivery times show that one republisher introduces a delay of 23ms,

a second republisher adds 18ms to the delay, and the third republisher adds 15ms.

The delay introduced by each republisher is the time taken for:

1. The tuple to be sent over the LAN to the republisher’s consumer agent.

2. The republisher to retrieve the tuple from its consumer agent.

3. The republisher to publish the tuple through its producer agent.

The reduction in additional delay by each level of republisher is likely to be due to

tuples getting grouped together and the synchronisation of the republishers polling
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Figure 8.15: Time taken to deliver tuples from the producer to the consumer using

different numbers of republishers which introduce no delay between polls of their input

queues.

Number of Republishers Average time to deliver a tuple (ms) Variance

0 26 10

1 49 11

2 67 13

3 82 15

Table 8.9: Average time to deliver a tuple using different numbers of republishers; no

delays are introduced by the republishers between each poll of their input queues.
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their input queue.

8.2.4 Discussion

As expected, the results of the experiments showed that for each level of republishers

a delay was introduced to the delivery time of a tuple. The extent of the delay

introduced, within the experimental conditions used, was governed by the delay in

the republisher between each successive poll of its consumer agent for tuples. When

the delay between successive polls was eliminated, the time taken to deliver a tuple

by each level of republishers became constant and was small, less than 25ms.

The experiments were conducted on machines linked by a 100Mbps network with

the result that network delays were minimal. The purpose of creating a publisher

hierarchy was to allow the r-gma Grid information and monitoring system to scale

to large Grids. It is anticipated that such Grids will incorporate machines located

at multiple sites with wide area network links. In such a setting, it is likely that

larger network delays would be introduced when sending tuples between sites. Thus,

it would seem sensible to set up a republisher at each site to collect together the data

from that site and make it available to others from a single location at that site.

It would have been desirable to investigate the benefits for query answering of using

a republisher to gather the data from several producers. However, such an experiment

would have been very complex and prone to experimental errors. While it has not been

possible to show the benefits of the partial answers of the republishers experimentally,

it is possible to show the significant reduction in the number of connections that

each consumer would need to maintain. Note that there is a performance cost in

maintaining a connection both on the side of the producer and on the side of the

consumer.

Suppose there are m consumers all posing similar queries for which there are n

relevant producers. When there are no relevant republishers available for the queries

then each of the m consumers must contact each of the n producers. This means that

the total number of connections is given by

n.m (8.9)

Now suppose there are k non-overlapping relevant republishers that, for each of meta
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query plans generated by the consumers form their own equivalence class. Each of

the k republishers must maintain n/k connections while the consumers must each

maintain k connections. Thus, the total number of connections is given by

k.n

k
+ k.m = n + k.m (8.10)

Finally, when each of the equivalence classes in each of the query plans for the con-

sumers contain l republishers, then each of the l republishers must maintain n/k

connections but the number of connections that the consumers must maintain does

not increase. Thus, the total number of connections is given by

l.k.n

k
+ k.m = l.n + k.m (8.11)

To illustrate the gain from using the republishers consider that there are 100 con-

sumers with similar queries for which there are 1,000 producers, then the total number

of connections would be 100,000. When there are just 10 non-overlapping republish-

ers the total number of connections reduces to 2,000, and when the redundancy of 5

copies of each of the republishers exist the number of connections increases to only

6,000. Obviously, to get the maximum benefit from the republishers the queries that

they pose needs to be carefully chosen.

8.3 Summary

This chapter has looked at two aspects of the performance of the implementation of

the stream integration system.

The first considered the performance of the registry service which needs to be very

efficient so that it does not impact the performance of the whole system. The results

showed that there are significant performance gains in using a structured representa-

tion for the conditions of a components query. The results of these experiments were

used to guide the implementation of the query planning mechanisms.

The second set of performance measures looked at the delay introduced in a tuple

reaching a consumer by using a hierarchy of republishers. Delays are introduced as the

tuple must pass through a number of republishers before reaching the consumer. It

was shown that the time taken by the republishers is very small, about 20ms, although
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if the current implementation of a republisher were able to be used for answering a

continuous query it would introduce a greater delay with large variability due to the

delay between successive polls of its consumer agent. It was also shown that there is

a significant reduction in the number of connections that a consumer and a producer

must maintain when using a hierarchy of publishers.
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Conclusions

The previous chapters have provided an architecture for integrating distributed data

from multiple autonomous sources, a formal framework for planning and maintaining

the execution of a continuous query, and details of a prototype implementation of

these techniques. This chapter will briefly summarise the main results of the work,

and then suggest future work which will build upon these results.

9.1 Review of Thesis and Conclusions

The goal of this thesis was to develop mechanisms by which multiple autonomous

distributed data sources, both streaming and stored, could be queried in a unified

and efficient manner without the user needing to know specific details about the exis-

tence of individual sources or their locations. To achieve this goal a data integration

approach was adopted, whereby a user poses a query over a global schema which is

then translated into one or more queries over the relevant available data sources.

Previous work on data integration has only considered stored data sources, and

the one-off queries associated with such data sources, i.e. the sources would present

their data as if it existed in a database and the data would not be updated during

the course of a query. However, the focus of this work has been on allowing streams

of data to be included in a data integration setting and the continuous queries used

to access such data. Thus, new techniques and mechanisms were needed to integrate

data where some of the distributed data sources publish their data as a stream.

This thesis has proposed an architecture for publishing and querying both stream-
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ing and stored data. As a first step to realising this architecture, mechanisms for

answering continuous selection queries over the global schema have been developed.

Since such queries are often long-lived, techniques for maintaining the answer streams

when the configuration of the system change have also been developed.

The stream integration system architecture proposed in this thesis consisted of

five types of components:

Schema Service: Maintains details of the relations that form the global schema.

The relations were separated into stream and database relations.

Producer: Allows a data source to publish data according to a view description.

Consumer: Allows data to be retrieved that satisfies a query over the global schema.

Republisher: Poses a query over the global schema and publishes the answer for use

in answering other queries.

Registry Service: Maintains details of the producers, consumers, and republishers

that are registered in the system to facilitate query planning.

The architecture was shown to meet the requirements of the motivating application,

a Grid information and monitoring system, although it is a general architecture and

could be used for any integration application where both streaming and stored data

needs to be accessible. In particular, the architecture is scalable since the data pub-

lished in the system flows from the producers, through zero or more republishers, and

then to the consumers, it does not flow through a centralised component.

A key feature of any data integration system is its query planning mechanism.

The query planning mechanism is responsible for transforming the query over the

global schema into a set of queries over the available data sources such that a sound,

and in some cases complete, answer to the global query is returned. For a stream

integration system, it was shown that the query planning mechanism should also

ensure two further properties. The first of these is that the answer stream should

guarantee some sort of order property. However, an exact chronological ordering is

not possible since the streams originate from multiple distributed sources which will

inevitable lead to some discrepancy in timestamps based on the drift of local clocks.
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Instead, a weak order property, which ensures that the tuples with the same key values

are in chronological order, was shown to be desirable. The second further property

that a stream integration query planning mechanism should ensure is that the answer

streams are duplicate free. Although it was assumed that the streams published by

the producers are disjoint, the republishers introduce redundancy and thus make it

possible for duplicates to appear in the answer stream.

A mechanism for generating query plans for answering continuous selection queries

that favoured the use of republishers over producers was developed in this thesis. The

query plans were derived from meta query plans which contain groups of maximal

relevant republishers that can provide equivalent data for a query and those maximal

relevant producers which provide additional data. It was shown that the approach

generated query plans which are guaranteed to generate answer streams with the four

desirable properties, i.e. the answer stream for a continuous query will be sound and

complete with respect to the query, duplicate free, and weakly ordered. These query

plans are computed by the consumer interacting with the registry service.

However, the meta query plans and query plans generated by the developed query

answering mechanism do not consider the locality of the publishers. Thus, it is possible

for a consumer and a relevant producer to be closely located but for the data to

travel vast distances since the consumer uses a distant republisher. This of course

depends on the deployment of the system. For the Grid information and monitoring

application used to motivate this work, it was suggested in Chapter 8 that a suitable

deployment of a republisher would be near several producers, e.g. a site with several

producers would have a site level republisher. This republisher would be used to

merge the streams together in the locality of their sources and make the merged

stream available. A consumer in the same locality could then exploit the benefits of

the republisher without the performance cost of sending the data over large distances.

Since continuous queries are long-lived, it is possible that during the execution of

a query there can be a change in the set of available publishers, i.e. the producers

and republishers. Such a change can affect the answer stream generated for a query.

As such, a mechanism was developed to identify which query plans are potentially

affected when there is a change, and to update the plans when they are affected.

Due to the fact that query plans are based on meta query plans containing maximal
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relevant publishers, for most updates either no change is required or only a minimal

change of substituting one equivalent republisher for another. For the two cases where

a substantial change to the query plan is required, these can be performed entirely by

the information contained in the consumer.

A key feature of the proposed architecture is the republisher component. The role

of the republishers is twofold. First, they facilitate complex one-time queries over

several streams by archiving the data streams. In particular, for the case of history

queries the republishers allow queries to be posed that span substantial periods of

historic data that has been published by several producers.

Secondly, for continuous queries the republishers facilitate more efficient query

answering as they merge the streams of several publishers into one stream, thus re-

ducing the number of publishers that a query needs to access. This can result in a

hierarchy of publishers being formed as it is possible for a republisher to consume its

data from another republisher. If such a hierarchy is formed this will increase the time

taken for a tuple to reach a consumer from the producer which publishes it as it must

travel through more components. Experiments were run to investigate the length

of this delay over the prototype implementation of the system deployed on several

machines connected by a high speed local area network. The results showed that the

delay introduced by a republisher was in the region of 20ms when the republishers

continuously poll their input queue.

9.2 Overcoming Incomplete Data

Another important aspect of the stream integration system is that of handling incom-

pleteness in the data. Initial work on this topic has been conducted and reported in

[115, 116, 117].

Incompleteness can occur for many reasons. Four categories for the sources of

incompleteness when publishing data, in particular stream data, on a Grid have been

identified [115]. These are:

Data Source Incompleteness: The sources of data do not contain all the data that

they claim. This can be because of using inappropriate or out of date schemas

resulting in the use of null values, or it can be because the data source does not
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contain everything that it claims.

Data Integration Incompleteness: When data sources make their data available

through some global schema incompleteness can occur due to the integration

process. This can be because the sources are not able to accurately describe their

content using the global schema due to limitations in the description language,

or the query answering mechanisms limit the ability of the integration system

to retrieve data.

Distribution of Data Sources: When data sources are distributed, e.g. publishing

data on a Grid, communication and reliability issues can give rise to incomplete-

ness. For example, components can fail leading to data not being available or

communication errors can occur.

Incompleteness with respect to a Query: The data repositories on a Grid may

not contain all the data that a query requests, e.g. a history query that requests

data that is older than that stored by the republishers. Such a query cannot be

answered completely although some form of partial answer may be generated

by the republishers.

Work has been conducted to overcome the third category of incompleteness, specif-

ically when the incompleteness manifests itself as missing values, when answering a

history query [116, 117]. When a data stream which has missing values is archived

by a republisher, the values will also be missing from the archive. Thus, the system

requires techniques for:

1. Detecting when a data stream arriving at a republisher is missing values.

2. Storing details about the missing values.

3. Answering queries over data stores containing missing values.

It is possible to detect when a data stream arriving at a republisher is missing

values on a specific channel. If the channel on the stream is periodic, i.e. it is published

with a certain frequency, then a republisher can expect to receive tuples at certain

time intervals. If a tuple does not arrive within a time period then it can be assumed

to be missing. However, if the channel on the stream is irregular then a republisher
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can still detect when tuples are missing by comparing the communication sequence

number with the last received communication sequence number.

Both detection mechanisms allow a republisher to detect when one or more tuples

are missing on a specific channel and the number of tuples that are missing. This

means that the republisher knows some information about missing tuples, i.e. the

values that define the channel and potentially the timestamp. This information can

be represented by inserting a tuple containing null values for the measurement values

of the tuple. For example, consider again the ntp relation, from Chapters 4, 5, and 6,

with the schema

ntp(from, to, tool, psize, latency, [timestamp]). (9.1)

If a tuple is detected as missing using the irregular stream detection method on the

Heriot-Watt to Rutherford Appleton Laboratory channel that used the PingER tool

with packets of 256 bytes, then the following representative tuple could be inserted

(’hw’, ’ral’, ’ping’, 256, null, null). (9.2)

Such representative tuples would then also be stored in the archive of the data stream.

When data stream archives can contain representative tuples, the query answering

mechanisms must be extended to enable the information contained in a representative

tuple to be exploited. The ideas of certain, possible, and impossible answer sets [118]

were extended to permit representative tuples to be used to generate an answer to a

query and possibly be returned as part of an answer to a query. This allowed some

queries to be answered completely even though there was incomplete information in

the relevant data. The mechanism also allows the user to be informed when it is not

possible to answer a query completely, and to provide additional information about

the missing parts of the answer.

9.3 Future Work

The work of this thesis gives rise to a number of interesting future research and

development directions. Some of these will need to be followed before the work can

be applied in real world applications, e.g. protocols to allow a consumer to switch
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from one query plan to another. Others will increase the power of the system and

thus make a stream integration system a more useful tool to a larger number of users,

e.g. increasing the expressivity of the query language supported. Some of the issues

that need to be addressed are discussed below.

9.3.1 Generating Query Plans

An important issue in the implementation of the stream integration system is the

choice of query plan generated from the meta query plan. The implementation de-

veloped for this thesis simply chooses a republisher at random from an equivalence

class containing more than one republisher. However, in a deployment there could be

significant benefit from employing a cost model to choose between the republishers in

an equivalence class. Such a cost model could be based on locality of the republisher

and thus reducing communication times. Another cost model could be based on the

monetary cost of using the service provided by a republisher if they charge for their

data. Any such model would need to be developed for the application domain where

the integration system was to be deployed.

It would also be interesting to investigate the effects of locality on the choice of

relevant publishers for a query plan. The work of this thesis assumed that using

republishers as high up the hierarchy as possible would be of maximum benefit since

in the Grid monitoring application this would give stability against changes in the

set of producers. The mechanism also ensured that the top level republishers do not

become overloaded by identifying equivalent republishers for a specific query lower

down in the hierarchy. However, if the chosen republisher is significantly further away

from the consumer than the producers generating the streams then there are issues

of locality that should be investigated.

9.3.2 Protocols for Plan Switching

Another important area of development work that would need to be conducted before

deploying a real world version of the stream integration system would be to devise ap-

propriate protocols and infrastructure to allow a consumer to switch seamlessly from

one query plan to another. The prototype developed for this thesis has a mechanism
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to update the query plan which consists of creating the new connections and then re-

moving the old connections. During this process, it is possible that the answer stream

for a query will contain duplicates (as it is consuming data from two overlapping

sources) and/or not be complete (as the component that it was consuming from no

longer exists). Section 7.4 proposed one approach that could be followed. However,

the development of these protocols would depend on the application domain and de-

ployment, and as such were beyond the scope of this thesis. The development of such

protocols would allow the query planning and maintenance techniques to be adopted

by the r-gma Grid information and monitoring system.

9.3.3 Increased Query Functionality

The query planning element of this thesis has considered how to answer continuous

selection queries. When these techniques are coupled with the one-time querying

techniques of the r-gma system [108], complex one-time queries involving joins be-

tween multiple streams and aggregation operators can be answered. However, the

proposed architecture allows both streaming and stored data sources to publish data.

To fully realise this functionality, additional query planning techniques are required

to permit continuous queries involving joins [119, 120, 121], aggregation [68, 122], and

windowing operators [67, 68, 69].

In order that joins between arbitrary data can be processed there needs to be a

formal understanding of the semantics of a join involving a stream. This needs to be

understood both for a join involving two streams, and for a join between a stream

relation and a stored relation. For example, does a join between two streams, s1 and

s2, mean that every tuple in s1 should be considered as a candidate for a join with

a tuple in s2? Bear in mind that data streams are potentially infinite and so such a

join could never be computed. As such, a join involving a stream needs to include

some sort of window to declare the extent of data that is considered for the join. To

be able to declare such windows requires additional constructs in the query language

and would need to be considered when planning the execution of a query, i.e. for a

publisher to be used to answer a query involving a window it must have a suitable

window of data. Work has already been conducted on executing joins over windows

[119, 120, 121]. However, these would need to be extended for an integration setting.
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Once the semantics of a join have been formalised there is the issue of where

to compute such joins. In order to decide where to compute such operations the

query planner must be able to reason about the query processing capabilities of the

publishers. For example, a producer that publishes stored data from a database

system that has been enhanced to process a continuous join with a stream would

need to declare that it is capable of such an operation so that the query planning

does not generate a plan that ships the stored data out of the publisher. When a

publisher of stored data is not capable of processing such joins then mechanisms for

republishing the data would be required. This results in issues in ensuring that the

republished copy is kept up-to-date cf. view maintenance [123, 124, 125], i.e. if the

data in the original data source changes then the republished data should also be

updated, but this mechanism should not become a burden on the system itself as this

would affect the overall performance of the system.

Another area which will require further research, both on the semantics and the

execution, is that of computing aggregate operators over a stream. The idea of an

aggregate query over a database is to condense the data so that the query returns

a smaller amount of information. However, the approaches involving data streams

published in the literature for performing aggregation functions, such as computing

the average over a sliding window, will still result in the same number of tuples in the

answer stream as in the original data stream. This is because every time a new tuple

arrives and the window slides along the stream by one tuple, then the average must

be recalculated and the answer streamed back. Thus, as each new tuple arrives on the

stream a new answer tuple is generated. Whilst techniques for storing approximate

values for these aggregates in limited memory have been developed [126], there has

been little work on condensing the aggregate streams. A notable exception is [127].

However, once these techniques have been developed, they will need to be combined

with the work on aggregate queries in a data integration setting [128, 129].

9.3.4 Technology Uptake

At present users of the r-gma system only make limited use of the continuous query

features and as such there is not the demand for the performance gains in using a

hierarchy of publishers. For the publisher hierarchy to be of benefit, there would need
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to be a large number of consumers posing continuous queries.

The limited use of the continuous query features in the r-gma system is probably

due to two reasons. The first is a lack of experience and knowledge of stream pro-

cessing. Research on the data stream paradigm only started in the mid to late 1990s.

While there has been a lot of research interest in the area, currently there is only one

commercial stream processing system on the market, StreamBase1, which was first

released in 2004, and limited understanding of how to query a stream. Secondly, the

limitation of only being able to pose selection queries over a data stream limits the

type of applications that can benefit, e.g. a visualisation tool needing to be updated

with the progress of a job can currently benefit [130].

By increasing the querying functionality of the stream integration system to in-

corporate stream and stored data and to allow aggregate operations over that data,

a broad range of new application areas become available. These include monitoring

patients in their own environment [131], environmental monitoring [5, 6], and manag-

ing disaster situations [132]. In the near future, there will be a plethora of disparate

sensing devices which are available in a pervasive manner. A system that is capable

of gathering these streams, inter-relating the data that they contain, and allowing the

data to be combined with data in stored sources will become very important. With

the future work outlined above building upon the results of this thesis, the proposed

stream integration system would be capable of fulfilling this role.

1http://www.streambase.com (March 2007)

185

http://www.streambase.com


Bibliography

[1] J. Chen, D.J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous

query system for internet databases. SIGMOD Record, 29(2):379–390, June

2000.

[2] Y. Zhu and D. Shasha. StatStream: Statistical monitoring of thousands of

data streams in real time. In Proceedings of the 28th International Conference

on Very Large Data Bases (VLDB 28), pages 358–369, Hong Kong (China),

August 2002. Morgan Kaufmann Publishers.

[3] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on

sensor networks. In IEEE Communications Magazine, pages 102–114. IEEE

Computer Society, August 2002.

[4] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In Pro-

ceedings of 2nd International Conference on Mobile Data Management, volume

1987 of Lecture Notes in Computer Science, pages 3–14, Hong Kong (China),

January 2001. Springer-Verlag.

[5] D. Hughes, P. Greenwood, G. Blair, G. Coulson, F. Pappenberger, P. Smith,

and K. Beven. An intelligent and adaptable grid-based flood monitoring and

warning system. In Proceedings of the UK e-Science All Hands Meeting 2006,

Nottingham (UK), September 2006.

[6] Proceedings of 4th Global Biodiversity Information Facility Science Symposium

2006, Cape Town (South Africa), April 2006.

[7] A. Arasu, M. Cherniack, E.F. Galvez, D. Maier, A. Maskey, E. Ryvkina,

M. Stonebraker, and R. Tibbetts. Linear road: A stream data management

186



Bibliography

benchmark. In Proceedings of the 30th International Conference on Very Large

Data Bases (VLDB 30), pages 480–491, Toronto (Canada), August 2004. Mor-

gan Kaufmann Publishers.

[8] S. Babu, L. Subramanian, and J. Widom. A data stream management system

for network traffic managment. In Proceedings of Workshop on Network-Related

Data Management (NRDM 2001), May 2001.

[9] M. Swany and R. Wolski. Representing dynamic performance information in

grid environments with the network weather service. In Proceedings of 2nd

International Symposium on Cluster Computing and the Grid (CCGrid 2002),

pages 48–56, Berlin (Germany), May 2002. IEEE Computer Society.

[10] A.J. Wilson, R. Byrom, L.A. Cornwall, M.S. Craig, A. Djaoui, S.M. Fisher,

S. Hicks, R.P. Middleton, J.A. Walk, A. Cooke, A.J.G. Gray, W. Nutt,

J. Magowan, J. Leake, R. Cordenonsi, N. Podhorszki, B. Coghlan, S. Kenny,

O. Lyttleton, and D. O’Callaghan. Information and monitoring services within

a grid environment. In Proceedings of Computing in High Energy and Nuclear

Physics (CHEP), Interlaken (Switzerland), September 2004.

[11] P.J. Stockreisser, J. Shao, W.A. Gray, and N.J. Fiddian. Supporting QoS mon-

itoring in virtual organisations. In Proceedings of 4th International Confer-

ence on Service Oriented Computing (ICSOC 2006), volume 4294 of Lecture

Notes in Computer Science, pages 447–452, Chicago (IL, USA), December 2006.

Springer-Verlag.

[12] I.T. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Com-

puting Infrastructure. Morgan Kaufmann Publishers, 2nd edition, 2004.

[13] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces

of publish/subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

[14] Y. Liu and B. Plale. Survey of publish subscribe event systems. Technical Report

574, Indiana University, Department of Computer Science, Indiana University,

Bloomington, Indiana, USA., May 2003.

187



Bibliography

[15] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues

in data stream systems. In Proceedings of 21st ACM Symposium on Principles

of Database Systems (PODS 2002), pages 1–16, Madisson (WI, USA), June

2002. ACM Press. Extended version available from authors.
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